
AD-A012 886

AN INTERACTIVE COMPUTER PROGRAM FOR
ASSESSING AND USING MULTIATTRIBUTE
UTILITY FUNCTIONS

Alan Sicherman

Massachusetts Institute of Technology

Prepared for:

Office of Naval Research

June 1975

DISTRIBUTED RY:

Mil
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

— MriMlil

ng i. ipm«R9pm« 1L* ■■«"*»"' 'l"^WPB»PPWP"iWPiPiHPIiPII -»- mniwi wm—n in. im» ii, II11 il Hl um »^^^W«pwnw*WI«p|

:: 1

~±±. -„• „,,,>■,„—»„v., -^,.>, ■mfiM „^,.,~ . _ :—, ; —. -*_...

219094

i

He

to
X>
00

: f

\ -

AN INTERACTIVE COMPUTER PROGRAM
FOR ASSESSING AND USING

MULTIATTRIBUTE UTILITY FUNCTIONS
by

ALAN SICHERMAN

Technical Report No.ffl

OPERATIONS RESEARCH CENTER

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commert»
Springfield. VA. 221S1

MASSACHUSETTS INSTITUT!
m

TECHNOLOGY

1875

DioTHliJUiioN vMWmfr A'
r— «■ i ■■» ■■■■ — ■ ■'« ■'■—

Approved ist public rcfcaan
DJetrlbuÜon Unlimited

/

jSEjmmjBmwrwvmimmmmm -» ii 111 »i »ip I... mm "T"'i[

lhclassified
SECURITY CLASSIFICATION OF THIS PAGE (Whit Data Bntmrmd)

| REPORT DOCUMENTATION PAGE READ INSTRUCTIONS |
BEFORE COMPLETING FORM

11. REPORT NUMBER

j Technical Report No. Ill
2. GOVT ACCESSION NO. J. RECIPIENT'S CATALOG NUMBER

|4. TITLE (and Subtitle)

I AN INTERACTIVE COMPUTER PROGRAM FOR
ASSESSING AND USING MULTIATTRIBUTE UTILITY
FUNCTIONS

S. TYPE Or REPORT ft PERIOD COVERED

Technical Report
June 1975 j

6. PERFORMING ORG. REPORT NUMBER

17. AUTHORr«)

1 Alan Sicherman

t. CONTRACT OR GRANT NUMBERf«) j

N00014-67-A-0204-0056

[9. PERFORMING ORGANIZATION NAME AND ADDRESS

M.LT. Operations Research Center
77 Massachusetts Avenue, Room 24-215

1 Cambridge, MA 02139

to. PROGRAM ELEMENT, PROJECT, TASK i
AREA ft WORK UNIT NUMBERS

NR ^47-104/06/09/71 #434
M.T.T./OSP 73787 |

111. CONTROLLING OFFICE NAME AND ADDRESS

| O.R. Branch, ONR, Navy Dept.
| 800 North Quincy Street
j Arlington, VA 22217

12. REPORT DATE j

June 1975 j
13. NUMBER OF FAGES

I 14. MONITORING AGENCY NAME ft ADO*ESS(7/ different from Controlling Office) 15. SECURITY CLASS, (of thie report)

Unclassified 1

15«. OECLASSIFICATION/DOWNGRAOING
SCHEDULE j

1 16. DISTRIBUTION STATEMf 17 (of thie Raport)

Releasable without limitations on dissemination.

1 17. DISTRIBUTION STATEMENT (ol tha abatrar.t entered In Block 20, II different trom Report) |

118. SUPPLEMENTARY NOTES |

1 19. KEY WORDS (Continue on ravaraa aid» it nacaaaary and identify by block number)

Interactive Computer Program |
1 Assessment of Multiattribute Utility Functions

Utilization of Multiattribute Utility Functions i
1 Decision Analysis 1

PRICES SUBJECT TO CHANGE
HO. ABSTRACT (Conllnua an ravaraa eld» II nacaaaary and Identity by otock numbar)

This paper presents a computer package designed to facilitate the assessment
and use of a decision maker's utility function for multiple objectives. The \
package provides routines for (1) specifying the decision maker's preferences
over multiple criteria, (2) treating uncertainty in the consequences result-
ting from a decision, (3) ranking alternative courses of action in order of
preference, and (4) studying the effects changes of preferences or uncer- j

| tainty estimates may have upon the ranking of alternatives. The routines (U) 1

DO FO«M
1473 EDITION OF f NOV «1 IS OBSOLETE I lhclassified

«rrfc»iTv Cl ASftlFtCATlOM OF THIS PAGE (Whan Data Entarad)

r
Unclassified

tICUWITY CLAttlFICATIOM OF THIS *AQ*.(Whm Datm Enfrnd)

20. are designed to be applicable in a variety of problem contexts.

The paper is organized as follows. The decision analysis approach which pro-
vides the theoretical basis for the program is summarized. This is followed
by a description of existing methods for multiattribute utility function assess-
ment and use. Then the computer package is presented and compared with the
aforementioned methods. Applications of the package to several problems are
illustrated and areas for future improvement and research are suggested. (U)

Unclassified
4*rilRlTV CA AS4IFICATION OF THIS PAG€(Wffft Dmtm Entmrmd)

I ,m ■ .>f—■-■■ - - ■ II Hi — n.

r "< » ' "-""«"w ■ "^
"-■" ■"■» i ">■?

AN INTERACTIVE COMPUTER PROGRAM

FOR ASSESSING AND USING

••"MIAlTRIBuTh UTILITY FUNCTIONS

by

ALAN SICHERMAN

technical Report No. Ill

Work Performed Under

Cortract N00014-67-0204-0056, Office of Naval Research

Decision Analysis Research

NR-104/06-09-71 #434 MIT/OSP 73787

Operations Research Center

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

June 1975

Reproduction in whole or in part is permitted for any purpose of the

United States Government.

FOREWORD

The Ope rations Research Center at the Massachusetts Institute of
Technology is an interdepartmental activity devoted to graduate education
and research in the field of operations research. The work of the Center
is supported, in part, by government contracts and industrial grants-in-aid.
The work reported herein was supported (in part) by the Office of Naval
Research under Contract N00014-67-A-0204-0056.

Alan Sicherman is a research assistant and doctoral student at the
Operations Research Center at M.I.T.

ABSTRACT

This report presents a computer package designed to facilitate the
assessment and use of a decision maker's utility function for multiple
objectives. The package provides routines for (1) specifying the decision
maker's preferences over multiple criteria, (2) treating uncertainty in
the consequences resulting from a decision, (3) ranking alternative courses
of action in order of preference, and (4) studying the effects changes in
preferences or uncertainty estimates may have upon the ranking of alterna-
tives. The routines are designed to be applicable in a variety of prob-
lem contexts.

The paper is organized as follows. The decision analysis approach
which provides the theoretical basis for the program is summarized. This
is followed by a description of existing methods for multiattribute utility
function assessment and use. Then the computer package is presented and
compared with the aforementioned methods. Applications of the package to
several problems are illustrated and areas for future improvement and re-
search are suggested.

-3-
■

ACKNOWLEDGEMENT

I wish to thank Professor Ralph L. Keeney who super-

vised my research and provided me with much guidance and many

helpful suggestions in drafting this thesis.

I would also like to acknowledge my fellow graduate

students who took an interest in using and testing some of my

research results.

Finally, I want to thank Professor John D. C. Little

for taking final responsibility for my thesis in the absence

* of Professor Keeney.

-4-

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENT

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS AND TABLES

1. INTRODUCTION

1.1 The Decision ^^lysis Approach

1.2 Statement of the Problem

1.3 Organization of the Thesis

2. THE ADDITIVE AND MULTIPLICATIVE UTILITY FUNCTIONS

2.1 The Basic Assumptions

2.2 Nesting Utility Functions

2.3 Applicability of the Functional Forms

3. DIFFICULTIES WITH EXISTING METHODS FOR ASSESSMENT
AND USE

3.1 Specifying the Preference Functions over the
Single Attributes

3.2 Assessing the Tradeoffs among Attributes

3.3 Evaluating Alternatives and Sensitivity
Analysis

3.4 Summary c ; Existing Methods and Their
Difficulties

Page

2

3

4

8

9

9

11

12

14

14

16

17

19

19

20

23

23

4. THE COMPUTER PACKAGE

4.1 Commands to Structure the Utility Function

4.2 Commands to Specify the Single Attribute
Utility Functions

25

23

27

-5-

Page

4.3 Commands to Specify the Scaling Constants 28

4.4 Commands fcr Evaluating Alternatives and 30
Sensitivity Analysis

4.5 General Command Format and Commands for 33
Facilitating Use of the Package

5. APPLICATION OF THE PROGRAM TO DIFFERENT PROBLEMS 36

5.1 A Simulated Application of MUFCAP: The 36
Mexico City Airport

5.1.1 Attributes for the Problem 36

5.1.2 Summary of the Method Used in the 37
Problem

5.1.3 A MUFCAP Approach to the Mexico City 33
Problem

5.1.4 Mexico City Airport Illustrations 41

5.1.5 Comments on Mexico City Airport 46
Illustrations

5.2 Evaluation of a Computer Time-Sharing System 49

5.2.1 Attributes for the Problem 49

5.2.2 Summary of the Method Used in the 49
Problem

5.2.3 A MUFCAP Approach 50

5.2.4 Computer Time-Sharing System 53
Illustrations

5.2.5 Comments on Computer Time-Sharing 60
System Illustrations

5*3 The Comprison of Dial-A-Ride Algorithms 64

5.3.1 Attributes for the Problem 64

5.3.2 Dial-A-Ride Illustrations 67

5.3.3 Comments on Dial-A-Ride Illustrations 68

mmm
 —■■"

-6-

Page

5.4 A Sampling of Problems to which MUFCAP Has 69
Been Applied

5.4.1 Evaluating Health Plans 69

5.4.2 Evaluating Policies for Dealing with 69
Prostitution in the Boston Area

5.4.3 Evaluating Police Dispatching and 71
Assignment Policies

5.5 Other Problem Settings Amenable to MUFCAP 71

5.5.1 Nuclear Power Plant Siting and Setting 71
Standards for Air Pollution Control

5.5.2 Anti-Stagflation and Energy Policy 72
Decisions

5.5.3 Multiobjective No-Risk Contexts 73

6. AREAS FOR IMPROVEMENT AND FUTURE RESEARCH

6.1 Ideas for Improving I^JFCAP as a Computer
Program

5.2 Expanding Old and Adding New Routines

6.3 Making MUFCAP Easier to Use

6.4 Assessment Question Issues

6.5 Areas for Future Research

6.6 Summary of the Chapter

75

75

77

79

80

82

84

7. SUMMARY AND CONCLUSIONS 86

REFERENCES 88

APPENDIX A. List, of MUFCAP Commands with Brief
Descriptions

A.l Notation and Command Description

91

91

mmmmmm mmm^mmmmmmm "'"H"1 •*-****

-7-

L

Paae

A.2 Further Notes on INDIFl, INDIF2, 97
and IMAP

APPENDIX B. MÜFCAP Program Listings 99

APPENDIX C. Some Algorithms Used in MUFCAP 116

C.l Calculation of the Parameter k in 116
the Multiplicative Utility Function

C.2 Calculation of the Constant Risk 117
Scalar Utility Function

Co3 Calculation of Gradient Components 118

APPENDIX D. MUFCAP1s Overall Program Design 119

D.l Language and Operating System 119
Considerations

D.2 Data Structures in MUFCAP 121

D.3 Recursive Functions and Nesting 122

D.4 Evaluating Alternatives 123

D.5 Program Flow 123

APPENDIX E. Tradeoff Properties of the Additive and 125
Multiplicative Forms

^'ti.im^^vv^i^-m^mmr^^^f*^

-8-

LIST OF ILLUSTRATIONS AND TABLES

Page

TABLES

1. A Comparison of MUFCAP and Grochow Utility 61
Functions

FIGURES

1. Indifference Curves in Utility Space 127

ILLUSTRATIONS

1 to 13 - Mexico City Airport Printout 41

14 to 26 - Computer Time-Sharing System Printout 53

27 and 28 - Dial-A-Ride Printout 67

--■-■■■-■ iii r~' ■■•-' -■-

.,.„... i.,Fi.., imwHMi-ii.ii'i'iiuLuii.inniiiiy i ■uLj.un.min pn ii mil w#n i nm»».jwu,iniJ.i

-9-

1. INTRODUCTION

Many decision-making problems are characterized by two

sources of complexity. First, there are multiple objectives

on the basis of which the decision should be made. In weigh-

ing alternative actions, the decision maker must consider the

tradeoffs between the degree of achievement in one objective

and the degree of achievement in others. Second, there is

often uncertainty about the consequences which will result

from any particular action.

Because of these complexities, there is a need for a

formal approach to help in evaJuafing alternatives. Decision

analysis is an appicrrh whx.h explicitly addresses the multi-

ple objective and uncertainly issues. The theoretical basis

for this is well established. However, many practical prob-

lems arise when one tries to apply decision analysis in parti-

cular situations. This thesis describes a computer package

for overcoming some of these difficulties.

1.1 The Decision Analysis Approach

Raiffa (14) discusses ne philosophy and techniques of

decision analysis in detail. We can think of the decision

analysis approach as consisting of four steps:

1. structuring the problem,

2. quantifying the uncertainties involved,

•mnßtiißm*'* ^**m ww»
^^^^^-—^r^^aiBjH^m,!i»i4iii.-L-iu. im.ijii ,_

-10-

3. quantifying the decision maker's preferences, and

4. combining the first three steps to evaluate the

alternatives.

Structuring includes identifying the decision maker and

the problem objectives. Measures of effectiveness (attributes)

indicati j the degree to which each objective is achieved are

also fo: uilated. Let us designate our set of attributes as X-,

X2,...,. and use x. to indicate a specific amount of attribute

X^. For example, X, may be profit in 1975 measured in thou-

sands of dollars and x, may be 188. A consequence will be

denoted by x = (x,,x0,...,x) and indicates the level x. of — l i. n l
each attribute which results given that consequence.

Quantifying uncertainties involves describing the

uncertainty in the possible consequences of any alternative.

For each alternative A., a probability distribution p. (x)

indicating which consequences might occur and their likelihood

of occurrence is required. The p. may be derived by means of

some analytical or simulation model or by subjective assess-

ments.

Quantifying preferences means assessing the decision

maker's utility function u(x) = ulx^x,,...^) which assigns

a number to each of the possible consequences. This function

is called a multiattribute utility function and will be

referred to by the mnemonic MUF. A MUF has two properties

which make it useful in addressing the issues of uncertainty

and tradeoffs between objectives. These properties are:

-11-

1. uCx1) > u(x") if and only if x' is preferred to x"

and

2. in situations with uncertainty, the expected value

of u is the appropriate guide for making decisions,

i.e., the alternative with the highest expected

value is the most preferred.

This second property follows from the axioms of ration-

al behavior postulated first in von Neumann and Morgenstern[18].

Evaluating alternatives involves calculating the

expected utility for each of the alternatives using the p. and

u from the previous steps. Various parameters of the probabi-

lity distributions and the utility function can be varied to

see how these affect the expected utility of the alternatives,

i.e., how "sensitive" the results are to changes in the para-

meters.

1.2 Statement of the Problem

A major practical problem arises when one tries to

obtain a MUF that is."tractable" yet appropriate for a parti-

cular situation. The general approach ha? been to postulate

assumptions about the decision maker's preferences and derive

the restrictions they place on the functional form for u. Then,

for any specific problem, the adequacy of the assumptions must

be verified and the parameters for the utility function

assessed and checked for internal consistency. Ideally, the

functional form of the MUF would have the following properties:

i , ,,- - — ■—06

_ _ mmvl ^„„UIWIHWJ.^- fl«'"" »"W' ' "-«■■«

-12-

1« be general enough to apply to many real problems,

2. require a minimal number of assessment questions

to be asked of the decision maker,

3, require assessments which are reasonable for a

decision maker to consider, and

4* be easy to use in evaluating alternatives and

conducting sensitivity analysis with respect to

various parameters.

Even with a convenient functional form for the MUF,

the nature and magnitude of a problem can make the assessment,

bookkeeping, and use of quantitative preference information a

formidable task. The computer package described in this

thesis is designed to handle this task for a variety of prob-

lem contexts.

1.3 Organization of the Thesis

Chapter 2 summarizes the theoretical development of

the functional forms for MUF's upon which the computer package

is based. Chapter 3 discusses exijting methods for assessing

and using MUF's and their difficulties. Chapter 4 describes

the computer package and the manner in which it alleviates the

difficulties mentioned in Chapter 3. Chapter 5 presets

several applications of the package to different problems

illustrating the use of the various package routines. Chapter

6 discusses suggestions for improving the package and for

-13-

future research. Chapter 7 contains a summary and conclusions

of the thesis.

Five appendices contain detailed information concerning

understanding and use of the computer package. Appendix A is

a concise summary of the package commands. Appendix B is a

listing of the program. Appendix C describes some of the algo-

rithms used in several of the package routines. Appendix D

contains a discussion of the overall program design. Appendix

E explores the tradeoff properties among the attributes implied

by the functional forms used for the multiattribute utility

function. It serves to explain the design and use of some of

the package routines.

. ,,..,., _,.„,,„.,, -. i vm—, iwmwwummI 11 ii iiJ mU

-14«

2% THE ADDITIVE AND MULTIPLICATIVE UTILITY FUNCTIONS

This chapter states the conditions which imply that a

MUF is either additive or multiplicative. None of the condi-

tions require the decision maker to consider preference trade-

offs between more than two attributes simultaneously or to

consider lotteries (specifying various x and the probabilities

of receiving them) with the level of more than one attribute

being varied. Furthermore, the assessments needed to specify

an n-attribute utility function are n single-attribute utility

functions and n scaling constants. Some properties of these

forms are discussed as well as their applicability to different

classes of problems.

2.1 The Basic Assumptions

The two basic assumptions which we use for both addi-

tive and multiplicative utility functions are referred to as

preferential independence and utility independence. These are

defined as follows:

Preferential Independence; The pair of attributes

(X1#X2) is preferentially independent of the other attributes

(X-,...,X) if preferences among (XwX2) pairs given that

(X-,...,X) are held fixed, do not depend on the level where

(X-,...,X) are fixed.

Preferential independence implies that the tradeoffs

between attributes X, and X2 do not depend on X-,...,X .

 -. - _~ , . --■iwwwTOinnw w ■■ imw ■.■■»->mmiwpip ,,.M,I«I. rr . «...;. ..L... .. u HUH

-15-

utility Independence; The attribute X, is utility

independent of the other attributes (X2,...,X) if preferences

among lotteries over X1 (i.e., lotteries with uncertainty

about the level of X, only) given X2,...,X are fixed, do not

depend on the level where those attributes are fixed.

The main result can now be stated.

Theorem 1. For n > 3, if for some X., (X.,X.) is pre-

ferentially independent of the other attri-

butes for ail j 7* i and Xi is utility

independent of all the other attributes,

then either

n
u(x) = Z k.u.(x.) , (1)

i=l x x 1

or
n

1 + ku(x) « n [1 + kk.u. (x.)] , (2)
~ i=l x x x

where

(i) u and u. are utility functions scaled from zero

to one,

(ii) the k.'s are scaling constants with 0 < k. < 1,

and

(iii) k > -1 is a non-zero scaling constant satisfying

the equation

n
1 + k - n (1 + kk.) . (3)

i=l 1

- ^——■—,■■ i ■'■"-"■'■ "■ ■ ll '"""■" 1LllM

-16-

The proof of this result is found in Keeney [9]. Alternative

sets of assumptions leading to either form (1) or (2) are

found in Fishburn [3], Pollak [12], and Meyer [11]. The func-

tional form (1) is referred to as the additive utility function

and (2) is the multiplicative utility function. For the case

of two attributes, the following is proved in Keeney [7]:

Theorem 2. For n = 2, if X is utility independent of

X2 and X2 is utility independent of X,, then the

utility function ufx^iXj is either additive or multi-

plicative.
n

Using either (1) or (2), if Z k. « 1, the utility function

is additive, and if Z k. / 1, it is multiplicative. When
i=1 x

Z k. > 1, then -1 < k < 0, and when Z k. < 1, then
i=l x i-1 x

0 < k < «. To use either the additive or multiplicative form,

we need to obtain exactly the same information. We have to

assess the n single-attribute utility functions u.(x.) and the

n scaling constants k..

2. 2 Nesting Utility Functions

The results concerning the functional forms above are

valid regardless of whether the X.'s are scalar attributes or

vector attributes. This means that the x.'s can be either

scalars or vectors. In the former case, the component utility

function u. is a uniattribute utility function, whereas in the

latter case, u. is itself a multiattribute utility function.

 - t^^—- - - - -™_ •

-17-

I£ Xi is a vector attribute, it is possible, subject to satis-

fying the requisite assumptions, to use Theorems 1 and 2 con-

cerning u.. In such a case, we will say u. is a nested MUF.

That is, u. is a MUF nested within the MUF u. Our interest in

nesting utility functions will become more apparent in the dis-

cussion concerning the applicability of the functional forms.

2.3 Applicability of the Functional Forms

In terms of the required assessments, the additive and

multiplicative utility functions appear to be the practical

ones for say n > 4. Discussions on this and the reasonableness

of the assumptions can be found in Keeney [9]. Even when the

requisite assumptions do not precisely hold, it may be a good

approximation to assume they do. Furthermore, by nesting one

MUF inside another, additional flexibility in the preference

structure can be achieved.

The effect of nesting multiplicative forms is to

create an extra degree of freedom in the problem by having an

extra independent constant. Without nesting, the number of

independent scaling constants is equal to the number of single

attributes. However, suppose u is a MUF nested within u and

that un has three single attributes. Then one would need n

scaling constants for the "outer MUF" and three for the "inner

MUF" for a total of n + 3f even though there are only n + 2

single attributes, X.,...,X_ , and the three single attributes l n-l '

in u . The degree of freedom afforded by the extra parameter

,t

. •,, ■■■

"rw"«cJ-."' I m'

-18-

r>ermits tradeoffs between two attributes to be dependent on a

third. Specifically, tradeoffs between any of the single

attributes in u and those not in u depend upon the levels of
n n r

the other single attributes in u . This is discussed in detail
n

in Appendix E.

Jsing various nesting schemes, enough extra constants

could be provided to model situations in which tradeoffs bet-

ween many pc*irs of attributes depend on the level of other

attributes. That is to say, situations in which the preferen-

tial independence assumption does not hold for all the single

attributes can still be modeled using nesting.

In cz&e of utility independence violations, the parti-

cular problem may be far mere sensitive to the scaling con-

stants or tradeoffs among the attributes than to the condi-

tional single-attribute utility function variations. Thus,

even in these cases, the additive or multiplicative form may

provide an adequate model for the problem.

In summary, the additive and multiplicative utility

functions are simple enough to be tractable and yet, especially

with nesting, robust enough to adequately quantify preferences

for many problems. In practice, however, assessing and using

such MUF's is "easiei said than done."

trjnmg/jmmmm »M"1-»' m m "'^' waww—""r mmmmmiftm H »im-»"*>•■ "■ .i»n.«."t PE ^■ffwjpp—pi ■> i ■ ^ww^»^ipww<in^TiiwwTp^pppijippwpyi i ipqpp ' »■'.*'■' —--^-- ■ m « innpn >> i»n,i*i i u.mi

!

-19-

3. DIFFICULTIES WITH EXISTING METHODS FOR ASSESSMENT AND USE

In this chapter, existing methods for assessing and

using MJF's are discussed. Difficulties encountered with these

methods include:

(1) the necessity to ask "extreme value" questions to

keop the computational requirements for specifying

a utility function to a manageaDle level,

(2) the tedium of calculating component utility func-

tions and scaling constants even in this case,

(3) the lack of immediate feedback to the decision

maker of the implication of his preferences,

(4) the absence of convenient procedures for "updat-

ing" the decision maker's preferer, s and

conducting sensitivity analysis.

In all that follows, we will assume that the assump-

tions implying that the MUF is either additive or multiplica-

tive hold. The discussion is developed in terms of the steps

customarily followed in assessing and using a MUF.

3.1 Specifying the Preference Functions over the Single
Attributes

Techniques for assessing single-attribute utility

functions have become fairly standard (Raiffa [14]), and

sophisticated computer programs have been developed for

fitting single-attribute utility functions (Schlaifer [16]).

,.t.-»t-i.M

fDtWWK-TSZZ
■HP W.I 1 ■ II» ..IIUII '

-20-

Such programs provide quick feedback which assists the decision

maker in checking if his assessments and their implications

appear reasonable. There is difficulty in using these programs

for multiattribute utility applications, since at present, they

do not exist in conjunction with a multiattribute utility

assessment package.

3.2 Assessing the Tradeoffs among Attributes

The issue of tradeoffs among the attributes is add-

ressed by assessing the k.'s in the utility functions (1) or

(2). In theory, the general method for doing this is very

simple. If there are n attributes, we want to assess the n

unknown k.'s by creating n independent equations with the n

unknowns and solving. An equation is created by (i) having

the decision maker indicate two options, where an option is

either a consequence or a lottery, between which he is indif-

ferent, and (ii) equating the expected utility of these options

using either (1) or (2). For instance, if the decision maker

finds x' and x" indifferent, then u(x') == u(x") provides one

equation with at most n unknowns.

Because of the difficulty and tedium in manually solv-

ing n equations (which are not necessarily linear) with n

unknowns, current practice in assessing the k. 's usually

requires sets of equations which are simple to solve. This

basically limits the assessment questions to two types. To

- mvmmmmnmim**«* "-*"~"^ WI.J.IUU .u i mymmm

-21-

indicate these, let us define x* = (x,*,^*'...,x *) and

xl° ™ ^xi°'x2°'••''xn°^
as tne most desirable and least desir-

able consequences. Then, because of the scaling conventions

given in Theorems 1 and 2,

u(x*) = 1 , u(x°) = 0 , (4)

and

ui(xi*) = 1 , ui(xi°) = 0 , i - 1,2,...,n . (5)

Question I. For what probability p are you indifferent bet-

ween

(i) the lottery giving a p chance at x* and 1-p chance

at x°, and

(ii) the consequence (x0.,...^0. .,x*.,x° ,,,...,x°).
X X—X 1 X+X A

If we define the decision maker's answer as p., then using

(4), the expected utility of the lottery is p., and using

either (1) or (2), the utility of the consequence is k..

Equating the expected utilities, we find

kL = p. (6)

The second type of question is illustrated by

Question II. Select a level of X., call it x.1, and a level

of X., call it x.', such that, for any fixed levels of all

the other attributes, you are indifferent between

(i) a consequence yielding x.' and x.° together, and

(ii) a consequence yielding x.' and x.° together.

-22-

Using (5) and either the multiplicative or additive utility

function, the utilities of these two indifferent consequences

can be equated to yield

kiu.(xi') = k.u.ix.') (7)

Once the single-attribute utility functions u. and u. are

assessed, both u.(x.) and u.(x.) are easily found, so (7) is

a simple linear equation expressing the relationship between

k. and k.•

A major shortcoming of questions of both types is the

use. of the extreme levels of the attributes, that is the x *'s

and x.ols. ?. :\nce the range from *.° to x.* must cover all the

posp-'Lie x. 's, the implications of, and h >nce preferences for,

the extreme levels are usually very difficult for a decision

maker to consider. A further difficulty with Question I is

the fact that the effect due to varying all n attributes simul-

taneously in a lottery must be considered. Hence, for computa-

tional ease, we must force the decision maker to.respond to

questions much more difficult to evaluate than would be

theoretically necessary.

A common practice in assessing the k.'s would be to use

a question I to evaluate the largest k., and then use type II

questions to evaluate the magnitude of the other k.'s relative

to the largest k.. Once we have the k.'s, the additive form

holds if they sum to one. Otherwise, the k.'s are suostituted

into (3) to evaluate the k for the multiplicative form. This

j,»m»i iiMll III> M— -'- —

■*.' ^BmwWH i,nii|^ifiin,iii,iwii«i .,wfti;u.T-i>.»Jmi.A.^».i«ii .»-g. Lmmi-.-iyiiiii. i.in ii.iniPtMtai"!'1»' ..'■"■■ W-'l ■■J»pi'i i I" I -,~~—-■ i ...*<rj *i|Tnai u. 11 ,i . I

-23-

last task in itself can be difficult using only a calculator.

3.3 Evaluating Alternatives and Sensitivity Analysis

Manual calculations are clearly impractical for evalu-

ating alternatives. With uncertainty, we need to evaluate the

expected value of u using the probability distribution describ-

ing the possible consequences. Even with probabilistic inde-

pendence among the X.'s. the computational task is large. It

is also clear that sophisticated sensitivity analyses are out

of the question without major computational help.

On the other hand, it is a large requirement to develop

a special computer program to accommodate a particular problem.

Such programmii.^ is often inflexible because of the special

problem nature for which it is done. For instance, it would

be difficult to add more attributes, to try different "nesting"

schemes, or explore the preference structure for "hints" of

creative new alternatives to generate.

3.4 Summary of Existing Methods and Their Difficulties

Current methods for assessing and using MUF's require

asking very difficult assessment questions, yield little feed-

back once given the responses requested and are tedious to

implement computationally. These drawbacks can often result

in abandoning the decision theoretic approach in favor of less

explicit and theoretically well-established but more expedient

methods for dealing with specific problems. The computer

. ■■um . mmymm

-24-

package to be described in the next chapter is designed to

remedy some of r.hese drawbacks.

D.iii UM mmpwpwwwwy»wiwwpH["""""~"~~ ..._,.-_.„. i p - . —

-25-

4. THE COMPUTER PACKAGE

This chapter describes the major features of a computer

package designed to alleviate some of the shortcomings with

existing methods for assessing and using multiattribute utility

functions. The package is referred to by the mnemonic MUFCAP

standing for "multiattribute utility function calculation and

assessment package.'' Steps customarily followed in obtaining

and using a MUF are presented with a description of the MUFCAP

commands appropriate in performing the particular step. Com-

mand usage is illustrated in Chapter 5. A concise summary of

these commands is in Appendix A and the program listing is in

Appendix B.

4.1 Commands to Structure the Utility Function

Structuring a utility function consists of specifying

a functional form, its attributes, and the ranges for each of

the attributes. MUFCAP has several commands for structuring

a preference function. The INPUT command requests a name for

the utility function and asks for the number of attributes

which are arguments of this function. The package then

requests a name, and a range for scalar attributes. The range

consists of two numbers which bound the amounts to be consi-

dered for each attribute. To specify a vector attribute, one

inputs a range with one bound equal to the other bound such

■—HH1 "■■J'" ■■ " "»III
I !■ ■■■■■■ I IB II

-26-

as 0,0. MUFCAP recognizes this as a signal for a vector attri-

bute and notes that the u. associated with that attribute is a

nested MUF. The package then requests the number of attributes

which are arguments of this nested MUF. For each of these, a

name and range is solicited. Further levels of nesting could

be specified if desired and the information requested would be

analogous to the material above. After a nested MUF is com-

pletely specified, the program returns to ask for the names

and ranges for whatever attributes have not yet been covered

in the outer MUF. When all the attributes have been-input,

the structure is complete and MUFCAP requests a new command

from the user.

The INPUT command provides for all the bookkeeping

which will be necessary for information to follow. Each k.

and u. (including those in a nested MUF), can be assessed

using the name of the attribute with which it is associated.

The INPUT command is quite flexible in having no logical limit

to the degree of nesting allowed.

In addition to INPUT, the package has commands for

adding or deleting attributes to or from the utility function.

It also has a command to facilitate "regrouping" of the attri-

butes into various "sub-MUF's." In this way, a model for a

problem can be conveniently altered in terms of different

nesting schemes.

..Wuv,mi«*"~c Li«.».MI-DP,*- ■■^-•-—' I MP,I,»I.' «- »I» n PI --I- I"»

-27-

4.2 Commands to Specify the Single Attribute Utility
functions

The next step in assessing a MUF involves specifying

the u. *s for the single attributes. As noted in Section 3.1,

sophisticated computer programs do exist for assessing single

(scalar) attribute utility functions. One could incorporate

these into MUFCAP. However, for simplicity, several less

sophisticated routines for assessing unidimensional utility

functions (referred to as UNIF's) were developed.

MUFCAP has a command UNISET for ? ecifying any of

three UNIF types; linear, exponential, and piecewise linear.

Pratt [13] considers the implications of these forms. The

linear utility function implies risk neutrality. This form

requires no more information than the range of the attribute.

The exponential form implies constant risk aversion or con-

stant risk proneness. It requires the specification of a

certainty equivalent for a single lottery. Given this, the

exponential form is fitted and scaled automatically by the

program. The piecewise linear utility function is specified

by providing the abscissa and ordinate values for n points

(3 < n < 15) of the utility function» This form can be used

for non-monotonic or S-shaped utility functions. These three

types provide the user with the means of specifying a UN"£F

appropriate for many situations. More forms can easily be

added to the package in the future.

-28-

MUFCAP also has command, which enable a user to quickly

display the assessed UNIF for purposes of checking its appro-

priateness. The command UNICAL calculates the utility for one

or a series of attribute levels. INVERSE calculates the attri-

bute level corresponding to a given utility value. LOTTERY

evaluates the certainty equivalent for any lottery with n con-

sequences and their associated probabilities over that attri-

bute, where 2 £ n £ 15.

To summarize, MUFCAP has commands to conveniently set

those u.'s which are UNIF's and to display them for feedback

purposes to check on their reasonableness.

4.3 Commands to Specify the Scaling Constants

Using the attribute names as identifiers, MUFCAP

allows the user to set the scaling constants in the MUF corres-

ponding to each attribute. If X. is a vector attribute, the

u. associated with it is a MUF with its own internal scaling

constants. By referring to the name of this vector attribute,

the user can specify the internal scaling constants for the

associated nested MUF. When all the k.'s for a particular

MUF have been set, the program automatically calculates the

corresponding k using (3).

Once the u.'s have been evaluated, the package has

several commands useful for assessing the k.'s in any parti-

cular MUF. The command INDIF2 takes as input two pairs of

"i-ii, in» .mim ii m*< ■ mmmmi mpp ■k ' IIU...UH.IIHIIIII.III '■■■■ ■■' **>•>

-29-

two indifference consequences each. These consequences can

vary only in terms of the two attributes whose k.'s are the

object of assessment. Then, using (2), the program computes

the relcwive k.'s (i.e., the ratio k./k. for attributes i and

j) implied by the indifference pairs. With INDIF2, the user

is not limited to choosing consequences which have one attri-

bute at a least desirable level in order to determine the

relative k.'s.

Once v;e know the relative k.'s, we can assign k.'s in

(2) by arbitrarily setting one k. to a fixed value and the

others in terms of the fixed k.. The command INDIFl can then

be used. It takes as input a single pair of indifference con-

sequences and computes the k, and the magnitude of the k.'s

implied by that pair and the currently assigned k.'s. It does

this by computing the factor by which the currently assigned

k.'s need to be multiplied to be consistent with the indif-

ference pair just given. MUFCAP provides a routine which

allows the user to multiply the currently assigned k.'s for

any MUF by any factor thus resetting them. In this way,

INDIFI enables the calculation of the magnitude of the k.'s

using an indifference relation instead of a lottery over all

the attributes at once. For consistency checks, a new indif-

ference pair of consequences can be input using INDIFI, which

then computes the factor described above. If this factor is

close to 1, the indifference pair is consistent with the cur-

rently assigned scaling factors.

-30-

Once the k.'s for a MUF have been assigned, an indif-

ference curve (see Appendix E) over any two attributes in that

MUF can be calculated with the command IMAP. IMAP permits a

user to get immediate feedback on the tradeoff implications of

the k.'s or indifference pairs which he has specified. He can

quickly see if the points "claimed" to be indifferent really

appear so to him. If not, the k.'s can be changed or other

indifference pairs solicited until they represent more accu-

rately the user's preferences for tradeoffs between those

attributes. If desired, IMAP can be used in conjunction with

INDI-F2 and other commands to produce indifference curves over

two attributes before all the other k.'s have been assessed.

This is discussed in Chapter 6 and Appendix E.

4.4 Commands for Evaluating Alternatives and Sensitivity
Analysis

Once the u.'s and k.'s have been set, the utility

function is completely specified and can be used to evaluate

alternatives- MUFCAP has commands for specifying two kinds

of alternatives; certain and uncertain. For certain alter-

natives, which are simply consequences, uniattribute amounts

are solicited until the alternative is completely described.

For uncertain alternatives, at present, MUFCAP assumes proba-

bilistic independence and requests a probability distribution

function for each scalar attribute. The probability distri-

bution function currently used is a piecewise linear

r.Ti.i"-' ■ ' ' l*if^

m FWTS'-"

-31-

approximation to the cumulative probability distribution for

X.. The user supplies n abscissa-ordinate pairs, where

2 £ n £ 9 to specify the cumulative distribution. The cumula-

tive distribution was chosen rather than the probability den-

sity function because the fractile method of assessing probabi-

lities (see Schlaifer [15]) yields points of the cumulative

distribution Other forms of probability distributions such

as the Gaussian as well as probabilistic dependencies could

be added to the package in the future.

The specified alternatives are given names by the

user. With these names, the user may add, change or delete

alternatives. He may also choose the ones which are to be

evaluated by listing their names with the appropriate commands

about to be described.

The command EVAL is used to evaluate (i.e., compute the

expected utility) for any alternative or group of alternatives.

EVAL can compute the expected utility for the overall utility

function or for the utility function associated with any par-

ticular attribute. In the latter case, attribute levels in an

alternative which are not arguments of the particular utility

function are ignored. Typically, EVAL can be used to evaluate

alternatives for the current multiattribute model. Parameters

such as the scaling constants or probability distributions can

then be changed and the alternativer, evaluated again. In this

way, we can see how sensitive the rankings are to changes in

„, .„„.„„Hi ti^iiiupji-^ «— i ippwi "!'■"> -■■ <t«mm

-32-

certain parameters. In a group decision-making context, dif-

ferent utility functions and probability estimates of group

members can be used to evaluate and rank the alternatives.

This might help clarify differences of opinion and suggest

certain creative compromises or areas where more precise pro-

bability estimates may be needed.

The command GRAD evaluates the gradient of a utility

function at any number of specified alternatives. The gradient

is defined as the vector [-4s--' -4s-"'-' -4s-) and indicates
\dxl dx2 dxn/

the direction of steepest increase in the utility function at

a specified point. The gradient component tells us which

attribute level changes would yield large increases in utility.

This could be useful in generating improved alternatives to

the.current one. Of course, one must keep in mind the scales

of the attributes in interpreting the gradient.

In addition to the gradient, GRAD also ccmoutes the

vector [-4r-, "Irr-'"'"' -4rr-) ' Each component represents the
V dul du2 dun/

rate of change of u with respect to a change in the utility u..

These components reveal the attributes for which an increase

in its utility will yield the largest increase in u. The

advantage of calculating these quantities in addition to the

gradient components are (a) components can be calculated for

MUF's as well as UNIF's, and (b) the unit of measurement for a

uniattribute does not distort the magnitude of the component.

Thus in some cases, fjj might give a better picture of

rp&**t> ^py ••■

-33-

du
possible improved alternatives than ■■>■ - . MUFCAP makes both ex.

available.

Summarizing, EVAL permits the evaluation of alterna-

tives, and along with routines which alter parameters, provides

for sensitivity analysis. GRAD makes use of the analytical

formulation of the problem to calculate quantities useful in

suggesting improved alternatives to the currently specified

ones.

4.5 General Command Format and Commands for Facilitating
_ use 0f the Package

MUFCAP commands are designed to be concise and are for

the most part no longer than three words. These words may

initiate a dialogue when more information is necessary. The

input format is free, i.e., words need not begin in a particu-

lar position on the page. For many commands, the user will be

prompted if he has left out a necessary word.

Mistyping causing invalid numbers on input is handled

automatically by the program and a correct number is requested.

Provision is made for the user to terminate a lengthy dialogue

by specifying the word QUIT for the next number to be input.

A new command can then be entered. In the future, a help

command could be easily implemented whir i would explain the

syntax of any other command, give definitions of terms used

in the program and make suggestions concerning what kinds of

steps to perform in assessing and using the MUF.

-34-

In addition to these features, MUFCAP has the facility

for saving the current status of the multiattribute utility

structure and the Current alternatives in a file of the user's

choosing to be read in at a later time, This gives MUFCAP the

capability for filing away several different MUF models as well

as a large number of alternatives for the same problem. It

also allows the user to build up his model over many different

sessions ?t the terminal and restore any status he has saved

away with which he wishes to calculate at any particular time.

Another feature of MUFCAP is the supplying of default

settings when the INPUT command is used to structure the MUF

for the problem. After INPUT, the default for all MUF's is

the additive form, with all the k.'s equal to each other, and

for all UNIF's, it is the linear utility function. With these

defaults, the user is set to calculate immediately after input.

Thus feedback can begin right away without requiring the user

to completely specify everything first. Scaling constants and

utility functions can then be altered after observing some

feedback to refine the model for the problem.

Finally, MUFCAP provides commands to print out the

current status of the assessments. There are routines to dis-

play the k.'s and k for any MUF, the range and type for any

scalar attribute utility function, the probability distribu-

tion of any attribute for any alternative, the multiattribute

utility function structure (i.e., nesting) and the currently

-ujjM—.mm ppipupppwEBimBP -^—■■ ■ - mHpmpmm ■■» '

-35-

defined alternatives. Commands are also provided for easily

changing parameters such as individual k.'s or the components

of any alternative.

-36-

5. APPLICATION OF THE PROGRAM TO DIFFERENT PROBLEMS

This chapter presents several applications designed to

show how MUFCAP can be used in practice. Certain application

descriptions contain computer printout illustrating the use of

various MUFCAP commands, Each set of computer printout is

followed by a comments section which summarizes the pertinent

features illustrated by the printout. Reference to Appendix A

when reading the printout and comments is recommended.

5.1" A Simulated Application of MUFCAP: The Mexico City
Airport

The Mexico City Airport problem concerned the decision

for developing the city's airport facilities in the most

"effective" manner in a multiobjective sense. The analysis

which was done is described in more detail in Kceney [8].

This problem was approached using the existing methods for MUF

assessment and utilized special computer programming to aid in

the calculations. This section presents what might have been

done if MUFCAP bad been available then.

5.1.1 Attributes for the Problem

The Mexico City Airport problem was defined in terms

of the following attributes:

X, = total cost in millions of pesos

C2 = the capacity in terms of the number of aircraft X,

■***-* IM ^ APA IL; ■ill« m. ' m^mm

-37-

operations per hour

X- = access time to and from the airport in minutes

X. = number of people seriously injured or killed per

aircraft accident

X5 = number of people displaced by airport develop-

ment

Xg = number of people subject to a high noise level;

(i.e., 90 CNR or more)

To incorporate time effects of building the airport, attri-

butes were defined using present values or averages where

appropriate. The capacity attribute X2 had to be made a func-

tion of capacity for 1975, capacity for 1985, and capacity for

1995, and thus it was a vector attribute.

5.1.2 Summary of the Method Used in the Problem

After verifying assumptions concerning preferential

and utility independence and ascertaining the appropriateness

of the multiplicative model, assessments were begun. First,

the fractile method was used to obtain probability distribu-

tions for all of the alternatives under consideration. Pro-

babilistic independence was assumed to simplify calculations.

Then uniattribute utility functions were assessed for ail

eight scalar attributes. The k.'s were assessed using the

lottery over all the attributes illustrated by Question I in

Section 3.2 for bot4 tbs overall MUF and nested capacity MUF.

Consistency checks on the relative k.'s involving tradeoffs

I I I i .M *..■» *■

11 UJM^'P!1 ■'.'"■V^1 Wß ■'■'■
„...,.,um i wmmmmm

irCTPWwwwpp

-38-

of two attributes at a time (see Question II, Section 3.2)

were also employed. Special computer programs and graphic

displays were developed for evaluating alternatives and sen-

sitivity analysis. For sensitivity analysis, the program

allowed changes in (a) the endpoints for the fractile cumula-

tive pro! ability distributions and (b) in the scaling factors

k.. Tv,e shapes of the utility functions or the cumulative

probability distributions could not be changed without pro-

gramming adjustments.

5.1.3 A MUFCAP Approach to the Mexico City Problem

The MUFCAP approach would follow the existing methods

scheme in making and verifying the preferential independence

and utility independence assumptions. The INPUT command would

structure the multiplicative function giving names such as

"cost" and "access" to the various attributes along with

ranges for the attribute amounts. Capacity would be put in

as a nested MUF.

Alternatives would be specified by inputting the nine-

point assessed fractile distribution for each uniattribute of

a particular alternative. Utility functions for single attri-

butes would be specified using any of the three forms avail-

able in MUFCAP.

Assessment of the k.'s could be accomplished without

depending upon the supplying of the probability for a lottery

over all the attributes as v.ac done. Pairs of indifference

-39-

points for two attributes would be fed into MUFCAP to imme-

diately produce indifference curves for examination and veri-

fication by the decision maker. In fchis way, the relative

k.'s would be established with the aid of feedback. The mag-

nitude of the k.'s could be established using INDIF1 (see

Section 4.3), so a lottery over all the attributes could be

avoided for this purpose. A good consistency check would be

provided by comparing the magnitude of the k.'s implied by

each method. Using MUFCAP, all of the initial assessments

could be made and stored for later use. The assessments would

have been made with the aid of immediate feedback and with no

need for very difficult lottery questions.

After the initial assessments, alternative evaluations

and sensitivity analysis could be performed immediately with

no need for special programming. Fractile distributions and

utility function shapes could also be altered without program-

ming adjustments. The different assessments of various

individuals and groups could have been filed away for later

reference using MUFCAP's filing capability.

In addition, other possibilities could have been

explored with a minimum of extra effort. New attributes such

as air pollution and political effects could be added into the

analysis with no special programming. The gradient calcula-

tion capability may have been used to support other alterna-

tives for exploration and development. If the preferential

.,—^» .-«...-., «n,,,»^. _,,.,■„,, ^.-^i .,, .,.,,. .,,,,„,„ ,,,.,,.,.,,. T I,I,HT«I|«I»I|I Lli, i, M , aii^iijpji | IIIIIJI ■■.m.lkRJ'W.PIW*' .»"•' --■--"" ll^^llUM II. Wn*r7*^*^PPV

-40-

independence of some attributes are questioned, different

nesting schemes could be tried to see if the ranking of the

alternatives would be affected. Thus MUFCAP could have pro-

vided the analysis that was performed with no special program-

ming and might have been used to explore variations of more

parameters, other multiattribute nesting schemes, and addi-

tions of new attributes.

y twp -■■"

-41-

5.1.4 Mexico City Airport Illustrations

lo»;on a Ian size (3 00) nono
ENTER PASSWORD FOR ALAN-

M20225.ll 9^0 ACCOUNT cn»|DS ^RE LOW. SEE USE? AMOUNTS.
AL AM LO00N IN PRO'IP^SS AT 10:33:1*0 ON APRIL 29, 1075
NO BROADCAST MESSAGES
READY

allocate file(mexico) dataset(mexIco)
READY
call nufcap
TEMPNAME ASSUMED AS A MEMBER NAME

COMMAND WORD AND FILE NAMES MUST BE IN CAPS .
COMMAND? :

Illustration 1

READ MEXICO

COMMAND? : DEBUG

STRUCTURE FOR mexlco
cost O.I18O
u.oonooE+ft3 5.OO0OOE+02
capacity 0.600
cap75 0.300
5.00000^01 1.30000E+02
cap85 0.50O
8.00000E+01 2.00000E+02
cap95 0.1*00
1.00300E+02 2.50000E+02
access 0.100
9.00Ö00E+91 1.20000E+01
safety 0.350
1.00000F+03 1.00000E+00
displacement 0.130
2.50000E+05 2.50000F+03
noise 0.180
1.50000E+03 2.00000E+00

COMMAND? :

Illustration 2

0

0

1

J

-42-

DISPLAY rnexico

LISTING OF K FACTORS
cost 0.l»30
capacity O.KOn
access 0.100
safety 0.350
displacement 0.180
noise 0.130
RIGK* -0.377 Slin K'S = 1.890

COMMAND? : OISPLAY capacity

LISTING OF K FACTORS
cap75 0.300
cap35 0.500
cap95 0.^00
BIGK= -0.U53 Sllfl K*S = 1.200

COMMAND? : DISPLAY access

RANGE: 90.000 12.000
UTYPE IS CONSTANT RISK ll(X)«B(l-EXP(-CX>)

B« 1.U39 C = 1.133 VARIABLE NORMALIZED
RUK AVERSE

COMMAND? :

Illustration 3

UNISFT access CR

INPUT ANY 50-50 LOTTERY ,f| THE FORM OF C.E./Q1 * o2. PLEASE

62 12 00

COMMAND? : UN IC AL access
U(90.000)= 0.000
U(7U.kQ<))* 0.3m,
IK 58.300)= 0.5U'*
IK 1*3.200) = 0.733
U(27.f>00) = 0.^82
U(12.000)= 1.000

COMMAND? : INVERSE access 2
•

.25 .75
77.U63=INV(0.250)
U1.617=INV(0.750)

COMMAND? :

Illustration 4

■I

-43-

LOTTERY access 3

LOTTERY ENDPTS. PLEASE?

20 40 60

CORRE3P. PROBABILITIES PLEASE?

.3 . «♦ .3

CE FOR LOTTERY« 41.816
COMMAND? • •

Illustration 5

ALTLIST
allone all half

cost 500,000 2250.000
cap75 130.000 90.000
cap85 200.000 1W.000
cap95 250.000 175.000
access 12.000 51.000
safety 1.000 500.500
displaceme 2500.000 126250.000
noise 2.000 751.000

CERT EQUIV. TABLE
NO PROS. UTERN.
COMMAND? :

FOR PROB ALTERN

Illustration 6

EVAL mexfco
allone 1.000
allhalf 0.81*1
a3 0.855

COMMAND? : EVAL mexIco al1half
allhalf 0.841

COMMAND? : EVAL capacity
allone 0.093
allhalf 0.805
a3 0.O99

COMMAND? : EVAL access
allone 1.000
allhalf O.KUi»
a3 1.000

COMMAND? :

a3

500*000
130.000
200.000
250.000
12.000

1^00.000
250000.000

1500.000

Illustration 7

-44-

KSET mexlco ADD

PIGK« 0.000
COMMAND? : Pi SPLAY mexico

LISTING 0C K FACTORS
cost
capacity
access
safety
d Isplacement
no I so
BlfiK»

COMMAND?
al lone
all ha If
a3

COMMAND?

0.25«*
0.^17
0.053
0.185
0.095
0.095

0.000 SUM K'S
: EVAL nexico

1.000
0.679
0.62*1

1.000

Illustration 8

READ MEXICO

COMMAND? : ADDALT all-fourth .25

ALTERNATIVE «ill-fourth SPECIF.
COMMAND? : EVAL mexIco al1-fourth
all-fourth 0.C16

COMM'VND? : HROPALT all-fourth

COMMAND? :

Illustration 9

INDIF1 safety cost

INPUT AN INDIFFERENCE PAIR PLEASE

800 1000 300 2500

IMPLIED NE!/ K'S FACTOR(S) 0.970 (
IMPLIED NEW 3IC.K« -0.S59

COMMAND? :

Illustration 10

i».7C0)

----- -■- iaMMi

1
-45-

INDIF2 Sdfr-ty cost

IM PUT 2 INDIFFERENCE PAIRS PLEASE
•
800 1000 300 2500
♦ :200 3500 750 2500

BIGK» -0.2G7/K(safoty)
INDIF PAIR YIELDS INFO AROUT REL K'S

REL K CHECK. CURRENT RATIO cost TO safety« 1.571
IMPLIED RATIO = 1.397

COMMAND? :

Illustration 11

IMAP safety cost

INPUT INDIF PT. THROUGH WHICH CURVE WILL PASS: 500 2500

INPUT NUMBER OF PTS. FOR MAP: 5

INPUT safety VALUES FOR MAP

300 U00 500 600 700

INniFFEREUCE PTS
(300.000, 2922.530)
(MM.000, 2715.855)
(500.000, 2500.002)
(600.000, 2272.636)
(700.000, 2O30.779)
UTIL FOR CURVE WITH OTHER UTR. AT 0 O.kkk

COMMAMO? :

Illustration 12

INTERBK mexico

capacity BIGK= -0.U53 INTERBK* -0.526
COMMAND? :

Illustration 13

m, ^firmmmmm m "■■ nwy ***•"•"'

-46-

5,1.5 Comments on Mexico City Airport Illustrations

Illustration 1

The user logs in, sets up a data file which will be

used and invokes MUFCAP.

Illustration 2

The status of preferences and alternative specifica-

tions in the file MEXICO is read in. The multiattribute

utility function structure is displayed.

Illustration 3

Characteristics of MUF's and UNIF's associated with

various attribute names are displayed. Mexico and capacity

have associated MUF's while access has an associated UNIF.

Illustration 4

An example of setting a UNIF is shown. The UNIF for

access is assumed to be of the constant risk type. The UNIF

is fitted in response to the 50-50 lottery certainty equiva-

lent request. UNICAL tabulates the UNIF for various amounts

of access. INVEPSE tabulates the amounts of access having

certain utility values. The amount of access having utility

«.25 should correspond to the certainty equivalent for the

50-50 lottery between the amount of access havino utility =.5

and that having utility =0. A check with Keeney [8] shows

that the fit for access appears to be very good.

„ , »minnn 11' ww. .1. ii —

-47-

Illustration 5

An example using the LOTTERY command is shown. A cer-

tainty equivalent for the 3-consequence lottery is output.

Illustration 6

Several "certain" alternatives are displayed.

"allone" has all the attributes at their best levels. "a3"

has cost, capacity and access at their best, and safety, dis-

placement and noise at their worst, "allhalf" has all the

attributes halfway between their range limits. There are no

uncertain alternatives in this current status.

Illustration 7

This illustrates the use of the EVAL command. The

overall utility function mexico is evaluated for all the

alternatives, and then only for allhalf. The MUF associated

with capacity is evaluated for all the alternatives. The UNIF

associated with access is similarly evaluated.

Illustration 8

These lines illustrate a little sensitivity analysis.

The K5KT command makes the overall utility function "mexico"

additive but maintains the same relative k.'s. The alterna-

tives are then evaluated. Notice the change in rank between

"allhalf" and "a^" with the additive model as opposed to the

original model.

■»www ■ 'wnm

-48-

Illustration 9

The original model is restored. An alternative all«

fourth is added, evaluated and dropped.

Illustration 10

A check on the magnitude of the k.'s is performed

using INDIF1 and a sinal« -'ndifference pair. The check shows

that the current k.'s agree well with the indifference-pair

check.

Illustration 11

An independent check is made on the relative k.'s con-

cerning "cost" and "safety." The implied ratio agrees well

with the current ratio.

Illustration 12

An indifference curve is tabulated between "cost" and

"safety."

Illustration 13

A check is made on the necessity for nesting capacity

as opposed to using the attributes cap75, cap85 and cap95

along with the others in a single d-attribute multiplicative

form. The check shows that without nesting the approximation

to the tradeoffs among the attributes would be pretty good.

(See Appendix E for a more detailed explanation.)

-49-

5.2 Evaluation of a Computer Time-Sharing System

This section concerns an example relevant to a manager

of a time-sharing system in formulating a MUF to evaluate dif-

ferent courses of action. The data and formulation is based

on Grochow [4]. This problem was also approached using

existing methods and special computer programming. A possible

MUFCAP approach is presented here.

5.2.1 Attributes for the Problem

The following attributes were used in the time-sharing

problem:

A ~ Availability measured in percentage of successful

logins

RT = Average response time to majority of trivial

requests in seconds

RC S Average response time to majority of compute-

bound requests

5.2.2 Summary of the Method Used in the Problem

The first stage of analysis was to determine what

utility independence relationships existed among the attri-

butes. It was found that RC was utility Independent of A, and

RT was utility independent of A and RC. But A was not utility

independent of RT or RC, and RC was not utility independent of

RT. Examination of the attributes showed that certain forms

of independence were not to be expected. For example,

-50-

tradeoffs between RC and A may depend on RT since it hardly

pays to be able to log in more often if RT is very bad.

Grochow's approach was to formulate an overall utility

function involving seven conditional one-attribute u^xlity

functions and effectively assessing six scaling constants

using existing methods.

5.2.3 A MUFCAP Approach

A possible MUFCAP approach to this problem would be

to try, as an approximation, the following nesting scheme:

u(a,rt,rc) - u(u ,uJ
a. X

where u = u (rt,rc) and u = u (a)
r r a a

This is the multiplicative form with u as a nested

MUF. There are four independent scaling constants possible

in this formulation. The model is assuming as an approxima-

tion that the various violations of utility independence can

be iqnored but that preferences for tradeoffs between avail-

ability and any response time depend on the level of the other

response time. This seems reasonable since tradeoffs between

response times are of concern after the user has logged in.

On the other hand, the value o* logging in (e.g., the amount

one is willing to trade to ga i a faster RC) may depend on how

good RT is.

To test out this MUFCAP approach, we can calibrate

the MUFCAP model using the graphical data in Grochow [4].

This data provides enough information to attempt setting of

Py --*7' jgpiBfWmWIHHVH IIHII.UUI1. W——i iJiwipyiUM wi ii wnwi-i-wmiJi^ in i.iiiw.i ipi^LiWJMU'W-'i UJi i
pmmpHpnpMH

-51-

the scaling constants for the MUFCAP model. In calibrating

the scalar attribute utility functions, an "average" constant

risk form for each attribute was estimated from the data.

After calibrating the model, various points in the

attribute space (i.e., alternatives) were evaluated and ranked

to see how closely they compared to the graphical data in

Grochow [4] . The results illustrate ' in the computer print-

outs following this section were reasonably close to the gra-

phical data and seemed to justify the MUFCAP approximation

scheme. The agreement seemed reasonable in spite of the fact

that, constant risk forms were used for the scalar attribute

utility functions. The graphical data exhibited 'jumps"

«hich could be modeled by piecewise linear forms in a more

refined approximation.

If one is satisfied with the MUFCAP approximation, we

can immediately proceed to perform gradient calculations show-

ing which direction one should take for maximum improvement

of the current state (in the attribute space) as Grochow

suggests. Also, expanding the model to include more attri-

butes (e.g., cost) seems easier with the MUFCAP schere than

with further conditional utility functions and "corner point"

(i.e., extreme value) assessments for scaling constants.

To summarize, MUFCAP, with nesting, may be used to

capture the essential features of situations which may not

satisfy some of the independence assumptions. When the

kw. n . * ■».— »-' WIII ,.imi.
,.. ..-.I. ..

■ ■ -■—*■ -

-52-

apprcximation can be used, graUent calculations, sensitivity

analysis and expansion of the model to include more attributes

become feasible using MUFCAP.

-53-
5.2.4 Computer Time-Sharing System Illustrations

INPUT grochow
HOW MANY ATTRIBUTES ARE IN THIS MUF? : 2

INPUT riAME AND RANGE FOR ATTR 1 OF UTIL FUNC ßrochow

a .1 1

INPUT NAME AND RANGE FOR ATTR 2 OF UTIL FUNC grochow

response 0 0

HOW MANY ATTR. ARE IN THIS MtIF? : 2

INPUT NAME AND RANGE FOR ATTR 1 OF UTIL FUNC response

rt 9 2

INPUT NAME AND RANGE COR ATTR 2 OF UTIL FUNC response

re 120 2

COMMAND? : DEBUG

STRUCTURE FOR »rochow
a 0.500
9.99999E-02 1.00000E+00 0

. response 0.500
rt 0.500
9.00000E+00 2.00100E+00 0
re 0.500
1.20000E+02 2.00003E+00 0

COMMAND? :

Illustration 14

1

-54-

UN I SET a CR

INPUT ANY 50-50 LOTTERY IN THE FORM OF C.E.,Q1 ft Q2. PLEASE

.7 .1 1

COMMAND? : UN I SET rt CR

INPUT ANY 50-50 LOTTERY IN THE FO*M OF C.E.,Q1 * Q2. PLEASE •
5 9 2

COMMAND? : UN I SET re CR

INPUT ANY 50-50 LOTTERY IN THE FORM OF C.E.,Q1 S 02. PLEASE

20 120 2

COMMAND? :

Illustration 15

INDIF1 rt re

INPUT AN INDIFFERENCE PAIR PLEASE

5 120 9 2

INDIF PAIR YIELDS INFO ABOUT REL K'S
REL K CHECK. CURRENT R\Tin re TO rt = 1.000
IMPLIED RATIO = O.500

COMMAND? : KSET response
rt » :.G6 7
re - :.533

BIOK» 0.000
COMMAND? :

Illustration 16

INDIF1 rt re

INPUT AN INDIFFERENCE PAIR PLEASE

5 2 2 120

IMPLIED NEW K'S FACTOR(S) 1.000 (1251*.905)
IMPLIED NEU r>IGK= 0.00*4

Illustration 17

-55-

ADDALT al

IS ALT. PROB? (YES OR NO): NO

ALTERNATIVE al SPECIF.
a ■ :.5

rt -:5

re ■:i»0

COMMAND? : ^PALT a 2

IS ALT. PROB? (YES OR MO): NO

ALTERNATIVE a2 SPECIF.
a ■ :.k

rt = :4

re «:U0

COMMAND? : APHALT a3

IS ALT. PROB? (YES OR NO): NO

ALTERNATIVE a3 SPECIF.
a ■ :.7

rt «:6

re «:i*0

COMMAND? : APPALT aU

IS ALT. PROB? (YES OR NO): NO

ALTERNATIVE a<t
a «: .8

SPECIF.

rt = :7

re »:^0

COMMAND? :

Illustration 18

WWWPW—apw uwwm.iinüJKimwj'J'fi' p WP w--■ I ■: -■'■ -»P« i ^UPppippp^pwwmBPipW p

-56-

EVU a
"i 0.279
a* 0.191
a3 0.501

COMMUin? : EVAL response
a\ 0.1*09
a2 0.511
a* 0.315
an 0 22S

COMMAND? :

Illustration 19

INDIF2 a response

INPUT UTILITY VALUES
INPUT 2 INDIFFERENCE PAIRS PLEASE •

.'28 .M .19 .51
+ S5 .315 .Gl* .23

BIGK* l.*50/K(a)
INDIF PAIR YIELPS INFO An.0UT REI. K'S
RPL K CHECK. CURRENT PATIO response TO a = 1.000
IMPLIED RATIO = 1.3U5

COMMAND? : KSET ^rochow
a » :.25
response * :.34

COMMAND? :

Illustration 20

INDIF1 a respon.se

INPUT UTILITY VALUES
INPUT AN INDIFFERENCE ?A IR PLEASE

.#501 .315 .Gift .22S

IMPLIED NEW KfS FACTOR(S) 0.976 (-2.301)
IMPLIED NEW B!GK= 5.239

COMMAND? :

Illustration 21

-57-

ADDALT a5

IS ALT. PROR? (YES OR NO): NO

ALTERNATIVE a5 SPECIF,
a «:,*♦

rt •:3

re »:/*0

COMMAND?
a3 .
ah

COMMAND?

: EVAL »rocha/ a 3 a 4 a 5
0.297
0.298
0.308

• •

Illustration 22

CHANGE response K .31

COMMAND? : EVAL g roc how a 3 a'» a 5
a3 0.292
ak 0.296
a5 0.293

COMMAND? : CHANGE response K .34

COMMAND? : KSET Erochow .75

BIGK= 11.660
COMMAND? : EVAL groc hoi/ a3 a'» a5
*3 0.262
ah 0.260
a5 0.261

COMMAND? : KSET Sroc how 1 .33333

BIGK= '1.321»
COMMAND? • •

Illustration 23

GRAD ßrochow al
al 0.255

ATTRH,UTIL. GRAD COMP. AND ATTR. GRAD COMP,
a 0.418 3.965E-01
response 0.454
rt 0.303 -4.461E-02
re 0.151 -l.miE-03

Illustration 24

-58-

ADDALT a7

IS ALT. PROB? (YES OR NO): NO

ALTERNATIVE a 7 SPECIF,
a a:.76

rt *:9

re «:2

COMMAND? : ADDALT a 3

IS ALT. PROS? (YES OR NO): NO

ALTERNATIVE a 8 SPECIF.
a a :.l

rt *:2

re «:2

COMMAND? : EVAL grochow a 7 a3
a7 0.338
a8 0.3U0

COMMAND? : CHAN6EALT re a7

re =:100

COMMAND? : CHVIftEALT re a8

re s:100

COMMAND? : EVU ,^rochow a7 a3
a7 0.1M
aS 0.223

COMMAND? :

Illustration 25

ii■ (in qmnmrfmm w I.MMULH p «mjpipnii.«. ■ i,n ■* ■—,»..» m ,■■■ mmmmmmmfu^murnffm i "(•»■■■»■»•^■«WPJ.«mmn

-59-

ADDALT a9

IS ALT. PROB? (YES OR NO): YES

ALTERATIVE al SPECIF.
HOW MANY FRACTILE PTS. (INCL 0 VIP 1001;) FOR a
(2<=N<=9) : 2
INPUT THE CUM FUNC F(X). X'S FIRST THEN F(X)'S

.1 1

•

0 1

HOW MANY FRACTILE PTS. (INCL 0 AMD 1005) FOR rt
(2<=N<=9) : 2
INPUT THE CUM FUNC F(X). X'S FIRST THEN r(X)fS •
2 9

0 1

HOW MANY FRACTILE DTS. (INCL 0 AND 100";) FOR re
(2<=N<=9) : 2
INPUT THE CUM FUNC F(X). X'S FIRST THEN F(X),S •
2 120

0 1

COMMAND? : EVAL /»roc how a9
a9 0.281

COMMAND? : AODALT alO .5

ALTERNATIVE alO SPECIF
COMMAND? : EVAL grochow a9 alO

*9 9.281
«10 0.232

COMMAND? :

Illustration 26

famfmfmmnmm n1"-'"1» '>»■*»*¥" -^T™■

-60-

5.2.5 Comments on Computer Time-Sharing System
Illustrations

Illustration 14

The INPUT command is used to structure the multiattri-

bute utility function. "Response" is a nested MUF. The DEBUG

command shows the defaults present after INPUT.

Illustration 15

All the UNIF's are set using the constant risk form.

Illustration 16

The relative k.'s are determined between "rt" nd "re"

using INDIF1, Notice how INDIF1 can aid in calculation when

a Type II Question (see Section 3.2) is asked. The KSET com-

mand sets the relative k.'s based on the output from INDIF1.

The absolute k.'s are not yet known.

Illustration 17

INDIF1 is used to determine the magnitude of the k.'s.

The results show that our current setting is close to the one

implied by these indifference points. The nested MUF

"response" has thus been assessed.

Illustration 18

Several alternatives are set up using ADDALT. These

will be used in assessing the scaling constants for the MUF

"grochow."

-61-

Illustration 19

The utility values for "a" and "response" are evaluated

for the alternatives. These will be used in the subsequent

commands; e.g., u (.5) = .279 a

u (5, 40) = .409

alternative al is the consequence (.5, 5. 40)

Illustration 20

INDIF2 is used to assess the relative k.' F between "a"

and "response." We must use utility values in specifying

indifference points because "response" is a vector attribute;

e.g., to specify that (.5, 5, 40)~(.4, 4, 40) we say

(.279, .409)~(.191, .511) (See Appendix A, Section A.2).

The KSET command is used to set up the relative k.'s implied

by the output frc \ INDIF2.

Illustration 21

INDIF1 is used to assess the magnitude of the k.'s for

the MUF "grochow." The results show that our current settings

are reasonable. The MUF "grochow" is now set.

Illustration 22

SVAL is used to rank the alternatives. The rankings

here are essentially the same as in Grochow.

■■ > - -

-62-

Illustration 23

Some sensitivity analysis is performed. The CHANGE

command alters the scaling constant for response. The alter-

natives are evaluated and the rankings have changed. The

original model is restored and the magnitude of the k.'s for

"grochow" are changed using KSET. Again, the rankings change

from the original model. The original model is restored.

Illustration 24

The gradient for "grochow" is calculated at the alter-

native a..

Illustration 25

Two "indifferent" alternatives under the current

model are set u? using ADDALT. The CHANGEALT command is used

to alter the common value of "rcM for the two alternatives.

They are evaluated again and are no longer indifferent. This

shows that tradeoffs between "a" and "rt" depend on the level

of "re." Our nesting scheme has captured this facet of the

problem. The tradeoff value of logging in is degraded by the

poorer "re."

Illustration 26

A probabilistic alternative is input and evaluated.

In this case, uniform distributions are implied by the cumu-

latives which are input.

mpppHPHP! i i ii.in«iimi w« 11.mm ! in.«it Jt
1 «■■

-63-

Although not shown on the computer printout, the fol-

lowing table is a comparison between the MUFCAP approximation

and the graphs in Grochow [4]. (The scales in Grochow [4]

are not easy to interpret and the following uses my interpre-

tation.)

Consequence
(a, rt, re)

(1,9,2)
(1,9,120)
(1,2,120)
(.5,9,2)
(.5,9,120)
(.5,2,120)
(.5,2,2)
(1,5,120)
(1,5,2)
(1,2,40)
(1,9,40)

"MUFCAP "GROCHOW

500 500
250 290 (?)
750 750
221 250
70 60

373 383
524 494
500 490
750 740
807 915
306 282

Table 5.1

A Comparison of MUFCAP and Grochow Utility Functions

-' m " ' " ' ii lup.ppi 9-wnw.m" ■^MIP" ■■ «aim»ij.win

-64-

5_.3 The Comparison of Dial-A-Ride Algorithms

This section presents elements of a MUFCAP application

to decide between two algorithms used by a computer to sche-

dule Di&l-A-Ride service which is a mode of transportation

being tried in certain cities today. The presentation is con-

fined to aspects of the application which illustrate further

features of MUFCAP.

5.3.1 Attributes for the Problem

The attributes of interest in this section are those

for which preferences are not monotonic. These include:

pickup time deviation = the difference in minutes

between the promised pickup

time and the actual pickup

time

travel time deviation = the difference in minutes

between the promised delivery

time and the actual delivery

time

The utility functions for these attributes were

assessed and input into MUFCAP making use of the piecewise

linear form. Two other attributes along with these were used

in making up the overall utility function (see Turnquist [17]).

The utility function parameters were assessed and

several certainty alternatives were evaluated to check that

the utility function reasonably represented the preferences

- —. i...u -mm. .,iyi ii i» ■■! lllliLiunumi IU HJW.11I v-"- "MMP1! IU I.U) I^WWPBy

-65-

of the person being assessed. For this; application, however,

the actual alternatives to be evaluated were outputs from a

stochastic simulation program. One hundred outputs for each

algorithm were evaluated using the utility function assessed

via MUFCAP. That is, once the utility function was assessed,

it was coded up in a separate program to process the output

from the simulation runs. An estimate of the expected utility

which was the criteria for choosing between the algorithm was

obtained by taking the average of the one hundred output eval-

uations. This represents a way for evaluating the expected

utility in a case where the attributes ar not probabilistic-

ally independent of each other. Although the whole evaluation

was not done through MUFCAP, this method for handling a case

in which probabilistic independence did not hold was not too

difficult. This was because senr-itivity analysis could still

be fairly easily performed since the utility function had been

conveniently parameterized into the multiplicative fcrm via

MUFCAP. It is conceivable that MUFCAP could be given an

option for reading an output file from a simulation model in

a future version of the program. Then evaluations could be

performed within MUFCAP.

The results of the evaluation showed that one algo-

rithm was slightly superior to the other over a wide range of

parameter variations av.d different simulation runs. Currently,

a more ambitious effort is being undertaken to assess public

r l
-66-

preferences for attributes germane to this problem as opposed

to one particular individual's preferences.

_j

r •..«n.no .1 I . I I.IMU ■mpjl

1

-67-

5.3,2 Dial-A-Ride Illustrations
ÜNISET pickdev PL
H017 MANY PTS. IN UTIL FUNC? • 5

INPUT THE FUNC, X'S FIRST THEN U(X)'S •

-30 0 10 15 30

•75 1 .75 .5 0

COMMAND? : UNICAL pickdev
U(30.000)s Ü.000
U(18.000)= 0.^00
U(6.000)= 0.?50
U(-6.000)= 0.950
U(-18.000)= 0.250
U(-30.000)= 0.750

COMMAND? :

Illustration 27

INVERSE pickdev
30.000=INV(0.0OO)
27.000=INV(0.10 0)
2i.noo«inv(0.300)
15.000=IMV(^.500)
11.000=INV(0.700)

U.000=INV(0.900}
0.000=iNV(1.000)

COMMAND? :

Illustration 28

-68-

5.3.3 Comments on Dial-A-Ride Illustrations

Illustration 27

A non-monotonic utility function for pickup deviation

is input using a piecewise linear utility function. Some

sample utility function values are tabulated using UNICAL.

The range of the function was input as 30, -30.

Illustration 28

The INVERSE function shows only positive deviations as

attribute levels having certain utility values. This is

because MUFCAP, for piecewise linear forms, searches the range

from the 1st range value to the 2nd range value until it finds

a level with the appropriate utility. This same feature holds

true when an indifference curve is generated. This has no

effect on the proper evaluation of alternatives.

-^■».■vn.iii i i un.,i.mi ■■■■« ■ in» ■■ IIII i — "t^"1" wimuii

-69-

5.4 A Sampling of Problems to which MUFCAP Has Been Applied

This section surveys some of the areas where MUFCAP

has been used in a preliminary manner to develop multiattri-

bute utility functions. In all these applications, the var-

ious commands and procedures already illustrated in previous

sections were employed. Chapter 6 further discusses some of

the things which were learned from these experiences.

5.4.1 Evaluating Health Plans

Four attributes were formulated for evaluating health

plans. These were convenience, quality, cost and personalness

of the service. Psychometric measures were developed for each

of the attributes and questionnaire assessments were used to

estimate the utility function parameters. MUFCAP was then

used to calculate k in the multiplicative form and generate

indifference curves between certain attributes (see Häuser and

Urban [6]).

5.4.2 Evaluating Policies for Dealing with Prostitu-
tion in the Boston Area

A class project in a decision analysis course at MIT

involved evaluating five options for dealing with the question

of legalizing prostitution in the Boston area. These options

were strict prohibition, toleration or benign neglect, regula-

tion of prostitution, licensing of individual prostitutes and

decriminalization. The attributes ware chosen to reflect the

prostitute's position, the public attitude, the economics of

v J ■fpppQMippapi

-70-

the options, the criminal justice system's opinion of the

options and the political implications of the choices.

The class divided into groups which concentrated on

the specific attribute areas defined above. The groups

assessed expected utility values for their individual attri-

butes for each option. Pseudo-attributes consisting of the

five attribute areas each measured by a utility value on a

linear scale from 0 to 1 were then input into MUFCAP.* A sen-

sitivity analysis concerning ranking of the options was then

performed on the magnitude of the k.'s. It showed that regu-

lation was the preferred policy for the particular relative

k.'s used in this problem over a large range of their magni-

tudes.

This application illustrates how a complex problem

can be subdivided into smaller problems and the outputs from

these combined in an overall utility function. In some cases,

the overall decision maker may not be familiar with the speci-

fic attributes used to represent the objectives of a particu-

lar area or group. If he has a "feel" for associating utility

with that group's preferences, however, he may be able to

estimate the scaling constants and conduct reasonable sensiti-

vity analyses in a manner analogous to what was done in the

class project on prostitution.

-a- Äy as rstrsar^-sii^ &&

i in ■ .. ■■ i.—.'^jy

-71-

5.4.3 Evaluating Police Dispatching and Assignment
Policies

Attributes for evaluating police assignment and dis-

patching strategies include cost per person per year, response

time tc various priority calls and distribution of the work-

load among the different police units. While models have

been formulated to predict what workloads and response times

will result from implement! g certain strategies, work is just

beginning on evaluating the tradeoffs between the various

attributes in the problem which go into deciding upon a strat-

egy. MUFCAP is now being used in preliminary attempts to

structure a utility function for such strategy evaluations.

5.5 Other Problem Setting Amenable to MUFCAP

Many problems which can be cast as multiobjective

decision making problems involving risk might be amenable to

analysis using MUFCAP. This section presents some examples

of current problems and how they might be structured for

MUFCAP analysis.

5.5.1 Nuclear Power Plant Siting and Setting
Standards for Air Pollution Control

This subsection mentions two areas which have been

formulated as multiattribute decision-making problems in the

literature. In Keeney and Nair [10!# general objectives ere

described for a nuclear power plant siting decision. These

include minimizing environmental damage, maximizing human

im iillWW

^p.u iiaiui .1 nil i. mi iiiBiin i, '"

-72-

health and safety, providing quality service for the customer

and maximizing the economics of the company. Explicit attri-

butes might be level of radiation per person for human safety

and service interruption in days for quality of service *-.o the

customer.

Keeney and Ellis [1] descr.be the decision problem

faced by New York City in legislating acceptable levels for

sulfur content in fuel to be consumed by industry. The prob-

lem is organized in detail into a multiattribute utility func-

tion structure including attributes which reflect such objec-

tives as the cost to the city of any plan, and effects on the

health of the residents.

In both these cases, good descriptions of how to for-

mulate the problem are available. The actual assessment in

detail or implementation of the formulations appear to be

possible through the use of MUFCAP.

5.5.2 Anti-Stagflation and Energy Policy Decisions

Two of the most important multiobjective problem areas

facing the United States are how to deal with the economic and

energy crises currently plaguing the country. A crucial

aspect in these problem« has been deciding what tradeoffs to

make between apparently competing objectives.

In the economic area, some of the measures for objec-

tives include the unemployment rate, the consumer price index

and growth in the GNP. The energy area includes cost of fuel

-73-

and degree of dependency upon other nations. In addition, the

problem of sharing the burden equitably among the different

groups in the United States such as labor, management, minori-

ties, lower, middle and upper classes, residents of certain

geographical regions, social security recipients, etc., lead

to explicit consideration of the tradeoffs between these dif-

ferent groups in trying to decide upon a policy.

These problems appear to be very difficult and a for-

mal analysis such as could be attempted with MUFCAP might shed

some light on comparing alternative solutions. Perhaps as

important, differences of opinion concerning tradeoffs among

the objectives might also be clarified.

5.5.3 Multiobiective No-Risk Contexts

In situations where no uncertainty is present, multi-

attribute utility theory, of course, is still valid. In these

situations, however, the theory of value functions (ordinal)

rather than utility functions (cardinal) are applicable as

well. With three or more attributes, preferential indepen-

dence implies that an overall value function exists which is

a weighted sum of the individual value functions assessed over

the attributes. How one assesses value functions as opposed

to utility functions will not be discussed here.

MUFCAP, while designed to implement utility theory,

can nevertheless be used to implement a value function

approach to a problem. The value functions for the individual

-74-

attributes are input as if they were utility functions using

the UNISET command. The scaling constants are input using the

KSET command and the overall "value" function is deliberately

made additive also using KSET.

MUFCAP can then be used to evaluate alternatives or

generate indifference curves. Different functions based on

the preferences of different people can be compared using

MUFCAP*s filing capability and sensitivity analysis varying

the scaling constants and value functions can also be tried.

-75-

6. AREAS FOR IMPROVEMENT AND FUTURE RESEARCH

This chapter discusses various improvements which

might be made to MUFCAP. Many of these were anticipated in

the sense that MUFCAP should be considered a first edition or

a basis on which to improve. In addition, through the use of

MUFCAP, other new ideas for routines and commands emerged.

Besides technical improvements which can be made to

the program, several theoretical and practical issues concern-

ing types of assessment questions arose during the course of

testing and using MUFCAP. These issues are also discussed in

this chapter.

6.1 Ideas for Improving MUFCAP as a Computer Program

MUFCAP, being a computer program, can be improved in

the ways that computer programs are generally improved. These

encompass four general areas.

The first would be more testing and debugging of the

existing routines. Currently, a bug exists in the LOTTERY

command which was intended to perform a particular calculation

when there is a 2-consequence lottery.. This bug can be

easily corrected when a later version is compiled, hopefully

including more than just the fix for this bug.

The second area concerns better program documentation.

In programming MUFCAP, less attention was paid to documenting

m -k

L.. mmrnm

-76-

routines as opposed to getting them to work properly. Hope-

fully, this thesis and the program listing are sufficient for

a knowledgeable programmer to successfully modify MUFCAP. In

addition, the documentation for program usage could be expand-

ed into a more extensive user's manual should MUFCAP ever

attain the status of a standard package for decision analysis.

A third improvement involves making the program more

"fail-safe" for the user. Many precautions have already been

taken to "protect" the user against leaving out necessary

input or making input mistakes. There remains room for im-

provement, however. One special area concerns generating an

indifference map involving an attribute with a risk averse

exponential form. With this form, there is a limit to the

utility one could obtain even if one had an infinite amount of

a desirable attribute. If an indifference point is given and

another is desired having less of one desirable attribute but

more of the risk averse one, it is possible that no amount of

that attribute will make the new point indifferent to the old

one. In this case, MUFCAP tries to extrapolate by taking the

log of a negative number causing one to exit from the program.

Thus, one should always save the status periodically so in

case one is forced to exit from MUFCAP, the program can be

invoked again and the status restored.

Finally, the output could be made more aesthetic and

easy to understand. This improvement is a necessary

■ W WPP [wi-in-iu'i'in-iiijiniiyi-MJUF1»1 "IP1 i""."f (in,"in iiw""!-

-77-

complement to having better documentation.

6.2 Expanding Old and Adding New Routines

Several ideas for better routines concern the areas of

generating indifference curves more automatically, expanding

the number of available scalar attribute utility function

forms, providing an easier way of specifying probabilistic

distributions and providing for analysis of alternatives where

probabilistic independence need not be assumed. There is also

the area of more automatic sensitivity analysis.

One should be able to generate an indifference curve

between two attributes which are preferentially independent of

all the other attributes after obtaining two sets of indif-

ference pairs. Currently, this can be done in MUFCAP in three

stages. First, INDIF2 is used to obtain the relative scaling

constants and k in terms of one of the scaling constants.

Then KSET is used with the OVERIDE option to set one scaling

constant arbitrarily, the second in terms of the first, and

k in terms of the first. Then, IMAP is used to generate

indifference curves. This procedure is one which is often

requested because indifference curves are a valuable source

of feedback. A needed improvement would be to have INDIF2

stay in an indifference curve generating mode and automati-

cally generate indifference curves for the user rigVit after

input of the indifference pairs. This should be fairly easy

a.«.M>. '■'■■Pl '■■'" ""■ '. mm

-78-

to implement. (Alas, a computer program must be limited to

some extent so a version can finally be produced.)

MUFCAP has three scalar attribute utility forms and

more could be added. These might include decreasingly risk

averse forms based on a single parameter which are very con-

venient to assess or multi-parameter forms.

Currently, specifying probabilistic alternatives,

especially for a many-attribute problem is laborious. More

automatic setups of these alternatives are possible. Sugges-

tions include setting all attributes with uniform density

functions over their ranges automatically or setting them all

with normal distributions about their centers and having the

range limit0 be several standard deviations away. Also,

having set up a probabilistic alternative, one should be able

to copy it into another alternative and then have the ability

to change a particular component. A method of handling pro-

babilistically dependent alternatives has already been dis-

cussed in Section 5.3. Another improvement would be provision

for discrete probability functions for the scalar attributes.

Presently, in doing sensitivity analysis, a user must

input the parameter changes and then evaluate alternatives.

The program could be made to vary a parameter over a range

and automatically evaluate alternatives, or generate other

feedback. This would enable the user to perform sensitivity

analysis more rapidly.

-79-

6.3 Making MUFCAP Easier to Use

MUFCAP requires an intermediate "decision analysis

person" to operate the program, ask assessment questions, and

discuss the feedback implied by the output. The program might

be upgraded to (a) "prompt" what assessments should be made at

various stages of the MUF development, and (b) print more

interpretation about what certain output numbers mean. More

will be mention«, j in this vein in later sections of this

chapter.

To develop an interface dialogue sr. that the program

would rie completely self-explanatory to decision makers in any

field would take a lot of testing and wor:c. This might not be

desirable either since discussion with a decision analyst

should not necessarily be avoided. I have found that users

not "immersed" in multiattribute utility theory were neverthe-

less able to "order me" in rapid-fire succession about what to

do next. Setting up the initial model is the hardest part.

But sensitivity analysis should be fairly ^asy for a "layman"

once he is reasonably satisfied with the initial model.

Another suggestion has been to put a graphics capabi-

lity into MUFCAP. This would enable the program to draw

utilicy functions *nd indifference curves displaying their

shape to the user. Using a MUFCAP with graphics would be

more stimulating in th.?t information would bo presented to the

u-er in a more concise manner. Gradient vectors mi.ght even

in i> Bi—WWWHW Hill« III Mill II ■^w ' BH ■-■»

-80-

be presented on a representation of a utility surface. Also,

changes to utility functions, indifference curves or parame-

ters could be input via a light pen or a joystick cursor

enabling the user to conduct sensitivity analysis with his

hand. An advantage of the non-graphics current package is

that it can be run on a portable terminal.

6.4 Assessment Question Issues

Although MUFCAP is a definite aid in MUF assessment,

a great deal of discussion and patience is still necessary to

solicit accurate information from the decision maker. The

results output by MUFCAP are completely based upon the input

information. In the early use of the package, it was tempting

to input numbers which were not reasonably arrived at just to

see some output from the package. The output was often non-

sensical from the viewpoint of certain assumptions about the

multiplicative form. For example, if two pairs of indiffer-

ence points are input to INDIF2, MUFCAP essentially solves

simultaneous equations of the form Ax,+By,+Cx,y, =

Ax2+By2+Cx2y2 where, for the multiplicative form, A corres-

ponds to k. , B to k., and C to kk.k.. In solving these

equations, however, arbitrary input can lead to arbitrary

values for k and k. in terms of k.. For example, sometimes

the implied k is equal to -2/k. which is not allowed for the

assumptions of the multiplicative form as defined in Kecnoy[9]

-81-

since it is less than -1. When this happens, new pairs of

indifference points should be input.

Besides leading to nonsensical output, certain forms

of indifference pair inputs can given very inaccurate results.

Indifference questions involving extreme attribute levels are

very difficult to consider. However, indifference questions

involving consequences which are not very different from each

other in terms of attribute levels can give very inaccurate

results. This is because it is hard to discriminate between

what is preferred and what is indifferent. The best questions

seem to be those in which the indifference points are spread

abcjt the middle of the attribute ranges and in which attri-

bute amounts vary halfway between the middle and extreme end *

of the range. Also, specifying two indifference pairs which

share a consequence point in common [e.g., (a,,b.) ~ (a«,b2)

and (a,,b,) ~(a3,b.J] seem less prone to giving nonsensical

results.

In using MUFCAP, certain indifference pairs appear to

be more "robust" than others in terms of the implied relative

scaling constants. For example, the type II question men-

tioned in Section 3.2 is very robust in the sense that if

[(x.1, x.°) ^(x.°, x.1)] implies certain relative scaling

constants, [(x^ + 6xi?x .•) ~» (x. °, x. ') 3 implies almost the

same relative scaling constants provided 6x. is small com-

pared to the range. This, however, is not always the case

-82-

when INDIF2 is used with two sets of indifference pairs

In cases where the difference in the consequences is relative-

ly small and it appears as if one of the scaling constants is

more than twice the other, a 6x. which is small can lead to
l

large changes in the implied relative scaling constants.

Fortunately, one can test the robustness of the rela-

tive scaling constants implied by two sets of indifference

pairs using MUFCAP. One merely varies one of the attribute

amounts by a small percentage and observes if the implied

relative scaling constants are vastly different from those

implied by the original sets of indifference pairs. A nice

improvement to MUFCAP would be for the program to automati-

cally test the robustness of certain inputs by performing the

appropriate variations and displaying the results for the

user. More about this will be discussed in the next section.

6.5 Areas for Future Research

One area for future research concerns the specification,

from a theoretical point of view, of assessment questions

involving indifference pairs which are "robust" as discussed

in Section 6.4 A starting point might be to examine the

indifference curves which are hyperbolas in the utility plane

u> x u.. (See Appendix E.) We could imagine having three

points on an indifference curve and then displacing one of

the points and plotting a new indifference curve. H^w much

"i'"""i"i'" -■■ • ■<»» mil um i«ij|.ijji.

-83-

the new curve differs from the old might depend on the spread

of the initial three points.

A second rea for examination is how to interpret

varying output during sensitivity analysis. When several

pairs of indifference points are input, the implied k is

often different. Interpreting what constitutes a significant

difference is not very precisely defined. For example, is a

k = -.50 significantly different from a k = -.80. Where the

relative scaling constants are concerned, variations here are

directly related to the size of the differences in attribute

amounts necessary to maintain certain indifference relation-

ships. But where k is concerned, it is difficult to tell

where the differences will be because k = -.50 as opposed to

k = -.80.

MUFCAP can be used to empirically examine what differ-

ences result when certain variations are perceived in the

value of k. In addition to aiding in such sensitivity analy-

sis, MUFCAP might also aid in researching the area of robust

assessment questions and interpreting what constitutes signi-

ficant variations in parameters implied by the answers to

assessment questions.

A third topic for future research would be methods of

verifying preferential and utility independence assumptions.

In order to use the multiplicative form, we must test that the

appropriate independence assumptions are satisfied. This can

-84-

be done by asking a lot of tradeoff questions and lottery-type

questions (see Keeney [8]). It can often be laborious to

rigorously verify the requisite assumptions, however.

MUFCAP provides another means for testing preferential

independence. If tradeoffs between attributes i and j imply

a negative k, but tradeoffs between j and 1 imply a positive

k, then obviously the set of attributes i, j and 1 cannot be

combined into a single multiplicative form and are not pre-

ferentially independent. Earlier in this section, we dis-

cussed the problem of what constituted a significant differ-

ence in the value of k implied by indifference pair inputs.

If this were known, preferential independence could be tested

by seeing if several indifference pair inputs implied the same

k within a certain "confidence interval." If so, we could

assume more confidently that preferential independence was

indeed present.

6.6 Summary of the Chapter

This chapter discussed a variety of areas for improving

MUFCAP and for future research. These included improving and

further documenting the computer cede and expanding and adding

new routines to improve feedback and make specifications

easier. The issues in asking the "best" kind of assessment

questions were discussed. These included asking questions

which would have "robust" answers and not yield results too

!

-85-

sensitive to small deviations in the answers. Areas for

future research concerned these issues of robust yet reason-

able assessment questions, how to interpret, in a statistical-

like fashion, variations in parameters implied by certain

indifference pair inputs and further ways of verifying certain

independence assumptions.

r JBWi^Mi«i*i , i .

-86-

7. SUMMARY AND CONCLUSIONS

This chapter summarizes the main aspects of the compu-

ter package MUFCAP. The current version provides the basic

features necessary to assess and use multiattribute utility

functions on complex decision problems. In particular, it per-

mits one to use realistic and simple questions in assessing

the decision maker's preferences, in addition to the "extreme

value" types of questions previously used for computational

reasons. MUFCAP provides for (a) a variety of immediate feed-

back of implications of the decision maker's responses,

(b) evaluation of alternatives and sensitivity analysis, and

(c) analyzing differences of preferences and judgements which

constitute differing models of the same problem such as might

arise among various individuals in a decision-making group.

The present MUFCAP should be considersd a first

edition, a basis on which to improve. In this regard, many

possible improvements have been suggested in this thesis such

as new routines for (a) providing more readable output, per-

haps even graphical displays, (b) promoting easier feedback

such as more automatic computation of the implications of

certain input, and (c) providing more aid to the user as to

what to do next. In addition, areas of research were sug-

gested concerning what kind of assessment questions are the

best to pursue with respect to the properties of being

.■I i ■ »i i ■■»■■

1
-87-

reasonable to answer, and having parameter implications not

overly sensitive (i.e., robust) to the precision of the answer.

J

 - WW »•>"•->■}"*'»"'*<>*,> <> lM<m** ■ MM. L.ij.i. n.m—WHpMJ—n»ntWH.Jm H|WllWH.ii|!iHH'WW.' —" ^WA ,'"L"

-88-

REFERENCES

1. Ellis, Howard M. and Keeney, R. L., "A Rational Approach

for Government Decisions Concerning Air Pollution," in

A. D. Drake, R. L. Keeney, and P. M. Morse (eds.),

Analysis of Public Systems, M.I.T. Press, Cambridge,

Mass., 1972.

2. Pike, C. T., PL/1 for Scientific Programmers, Prentice-

Hall, Inc., Englewood Cliffs, New Jersey, 1970.

3. Fishburn, P. C, "Independence in Utility Theory with

Whole Product Sets," Operations Research, Vol. 13, 28-45

(1965).

4. Grochow, Jerrold M., "A Utility Theoretic Approach to

Evaluation of a Time-Sharing System,in Walter Freiberger

(ed.), Statistical Computer Performa; ere Evaluation,

Academic Press, Inc., New York, 1972.

5. Hamming, R. W., Introduction to Applied Numerical Anal-

ysis, McGraw Hill, New York, 33-52 (1971).

6* Häuser, John R. and Urban, Glen L., "A Normative Methodo-

logy for Modeling Consumer Response to Innovation," Tech.

Rep, #109, Operations Research Center, M.I.T., Cambridge,

Mass., May, 1975.

i.u <i umm> "*"

-89-

7. Keeney, R. L., "utility Functions for Multiattributed

Consequences," Management Science, Vol. 18, 276-87 (1972).

8. Keeney, R. L., "A Decision Analysis with Multiple Objec-

tives: The Mexico City Airport," Bell Journal of

Economics and Management Science, Vol. 4, 101-117, (1973).

9. Keeney, R. L., "Multiplicative utility Functions,"

Operations Research, Vol., 22, 22-34 (1974).

10. Keeney. R. L., and Nair, Keshavan, "Decision Analysis for

Siting of Nuclear Power Plants—The Relevance of Multi-

attribute Utility Theory," Tech. Rep. #96, Operations

. Research Center, M.I.T., Cambridge, Mass., June, 1974.

11. Meyer, R. F., "On the Relationship Among the utility of

Assets, the utility of Consumption, and Investment

Strategy in an Uncertain, but Time Invariant World,"

Proceedings of the Fourth IFORS Conference, Venice,

Italy, 1969.

12. Pollak, R. A., "Additive von Neumann-Morgenstern

Utility Functions," Econometrica, Vol. 35, 485-595

(1967).

13. Pratt, J. W., "Risk Aversion in *-he Small and in the

Large," Econometrics, Vol. 32, 122-136 (1964),

. ... i.i i ii |i: in Mpf ""

-90-

14. Raiffa, H., Decision Analysis, Addison-Wesley, Reading,

Mass,, 1968.

15. Schlaifer, R. 0., Analysis of Decisions Under Uncertainty,

McGraw-Hill, New York, 1969.

16. Schlaifer, R. 0., Computer Programs for Elementary

Decision Analysis, Division of Research, Harvard Business

School, Boston, Mass., 1971.

17. Turnquist, Mark A., "A Bayesian Approach to Simulation—

Specific Experimental Design with Application to Modeling

Transportation Systems," Ph.D. Dissertation, Department

of Civil Engineering, M.I.T., May, 1975.

18. von Neumann, J. and Morgenstern, 0., Theory of Games and

Economic Behavior, 2nd Edition, Princeton University

Press, Princeton, New Jersey, 1947.

 _ _ i« i ——mipf
i i ■mil " r "'

-91-

APPENDIX A

LIST OF MUFCAP COMMANDS WITH BRIEF DESCRIPTIONS

A.l Notation and Command Descriptions

CE - Certainty equivalent

MÜF - Multiattribute Utility Function

UNIF - Uniattribute (scalar attribute; utility

function

frl'^2'"*''^R' " Brac^ets indicate the options which may be

chosen. No option needs to be selected.

(y, 9}*29 • • "vn' " Parentheses indicate that a choice must be

made among the options given.

INPUT name - Inputs the structure of the multiattribute

utility function to be referred to by 'name.' The dialogue

requests names for the attributes and their ranqes. Ranges

for attributes over which preferences are monotonic should

be input with the least desirable end of the range first.

A vector attribute, (and hence a nested MUF) is signalled

by specifying a range whose lower and upper limits are the

same. After INPUT, the default for all MUF's is the addi-

tive form with k. = k. for all i, j. The default for all

UNIF's is the linear utility function. The user is set to

calculate immediately after INPUT.

SAVE filename - Saves the current preference and alter-

native specifications in file named 'filename.'

,—..,-, i mmm mt

-92-

READ filename - Restores the information which was

saved in 'filename.1

DEBUG - Lists all the attributes in the

utility function structure including their names, scaling

factors, ranges, and UNIF types (0, 1, and 2 indicate res-

pectively linear, constant risk aversion, and piecewise

linear). A vector attribute has its name and scaling factor

listed and is followed by its component attributes.

ADDALT altname [factor] - Initiates dialogue to specify an

alternative to be referred to by 'altname.1 Either a pro-

babilistic or certainty alternative may be specified. If

the former is the case, a piecewise linear cumulative proba-

bility distribution is requested for each scalar attribute.

(Abscissa values for the cumulative are input in ascending

order.) The option 'factor' is a number which sets all of

the scalar attributes at the factor level of their ranges,

e.g., if factor = .1, all the scalar attributes are set at

one-tenth of the way from the 1st range value to the 2nd

range value.

DROPALT altname - removes the alternative 'altname'

from the status.

EVAL uname [A, B,...] - Evaluates the alternatives A,B,...,

usinj the utility function associated vith 'uname.' If no

f.1. «.Ulf. mmm^^m, umwp mmm WHH»P "" " "■'■* '■"■■y-1"1 ■ ■"|."1'"1 ww" .»•>.> ■■■■■■■ i-m.»».... uu..» miu.' »■ pi . i i i

-93-

alterndtives are specified, all alternatives in the status

are evaluated and the results listed,

UNISET uname (LIN,CR,PL) - Sets the scalar attribute

utility function associated with 'uname1 to linear, constant

risk averse, or piecewise linear form. For the piece^ise

linear form, the abscissa values are input in ascending

order.

KSET mname [factor,ADD,OVERIDE] - Sets the scaling factors

for ♦he MUF associated with 'mname.1 The number 'factor'

causes the current scaling factors to be multiplied by that

number. The program automatically calculates the k asso-

ciated with the new scaling factors. If ADD is specified,

the current factors are normalized to add to 1. The user

may input k directly in response to the final prompt by the

computer if OVERIDE has been specified.

GRAD uname [A,B,...] - Calculates the gradient

components of the utility function associated with 'uname'

for all or some of the alternatives A,B,... .

INDIF1 unamel unameS - In the unamel-uname2 attri-

bute plane, given relative k.'s, (i.e., scaling factors

with the appropriate ratio relationship to each other but

not necessarily the appropriate absolute value) the k is

specified by a single pair of indifference consequences.

JUIIIM"! i-nwifi' im.'«n-i< 11

„ _ _-.,^I ^-^ - «■ „r --— •■iiuww i i ■ mmm _—„ IWWI| , „,..»,-.. um ii n^*~ .mumimwMmfmm mw^

-94-

INDIF1 requests a pair of indifference consequences and uses

the current k.'s as the given relative k.'s. On output, the

k is given along with the factor by which the current k.'s

must be multiplied to yield the k (see KSET command with

•factor' option).

INDIF2 unamel uname2 - In the unamel-uname2 attribute

plane, with scaling factors denoted by k, and k2, inputting

two pairs of two indifference consequences each specifies

the ratio k^/k- and k - constant/k.. After INDIF2, the

KSET command may be used to fix k.,, and then k~ and k in

terms of k,. The command IMAP can then be used to generate

indifference curves in the unamel-uname2 plane. (For these

indifference curves, the values of k., i ^ 1,2, are

irrelevant)•

UNICAL uname [n] - Prints a list of utilities using

the UNIF associated with 'uname.' Once the number n is

specified, the user supplies n attribute amounts and the

program returns the n associated utilities.

INVERSE uname [n) - Prints a list of attribute amounts

associated with utilities using the UNIF 'uname.' Once the

number n is specified, the user supplies n utility amounts

of 'uname' and the program returns the n associated attri-

bute levels. If n is not specified, the program has a

default printout.

i

»*;*' ■■» ■■ mm immmmmmmmm

-95-

CHANGEALT uname altname - Routine to change the

•uname1 attribute component of the alternative 'altname1

without changing the other components.

CHANGE uname (NAME,K, RANGE) param - Routine to change the

name or scaling factor or range of the attribute 'uname' to

param. When the range is changed, param is ~ot required.

The program requests respecification of the UNIF type when

the range is changed. When the name is changed, param must

not be left blank.

ALTLIST - Lists the current

alternatives. The probabilistic alternatives are listed

with their CE equivalent components.

DISPLAY uname - Displays the charac-

teristics of the utility function associated with 'uname.'

The scaling factors for tl;e attribute arguments and their

sum is listed for a MUF while the range and type is listed

for a UNIF.

FRACTILE uname altname - Displays the cumulative

distribution for 'uname' in the alternative 'altname.'

LOTTERY uname n - Calculates the CE for

a lottery involving the scalar attribute 'uname.' The num-

ber n specifies the number of possible lottery consequences.

These are solicited with their corresponding porbabilities

-96-

and the CE is calculated.

IMAP unamel uname2 - Initiates a dialogue to generate

an indifference 'curve' in the unamel-uname2 plane. A point

through which the curve will pass is solicited. Then values

of unamel are input and the uname2 values required to main-

tain indifference are output.

STOP - Thanks the user for using MUFCAP

and exits from the program.

ADDU unamel uname2 - Initiates a dialogue which adds

an attribute 'unamel1 to the argument list of the MUF asso-

ciated with 'uname2.'

DELU uname - Deletes the attribute 'uname'

from the structure.

SWITCH uname uname2 - Adds current attribute 'uname'

to the argument list of the MUF associated with 'uname2'and

deletes 'uname' as an argument of the MUF to which it

originally belonged.

INTERBK uname - If any attribute arguments of the

MUF associated with 'uname' is a vector, its utility func-

tion is a nested MUF with its own internal constant k.

INTERBK calculates the theoretical k for the nested MUF

which would make the nesting of the inner attributes

I _.,.,._^.. >~—. ... VM.,.„„...,,,.,.,, ,„, ,..,.„,, ,»■,,,.:-, , j ..nw«. « .i ■HI. «i. ,i in i jimii ii I.JIJU1I" px ™ i i IIIHIIM

-97-

unnecessary and prints it along with the current internal k.

A.2 Further Notes on INDIF1, INDIF2 and IMAP

The INDIF1 comma. 5 may b<3 used with input to a Type II

Question (see Section 3.2). It will then give the relative

k.'s as output. An example of this is shown in Illustration

16 of Section 5.2.4.

For INDIF1, INDIF2 and IMAP, if either unamel or uname2

is a vector attribute, consequences must be input as utility

pairs rather than attribute value pairs. The utility for an

attribute value is the result obtained when that attribute

amount (vector or scalar) is evaluated using the utility func-

tion associated with the attribute name. An example of this

is shown in Illustraions 19 through 21 of Section 5.2.4.

unamel and uname2 must be explicit arguments of the

same MUF when using INDIF1, INDIF2 or IMAP. That is to say,

(unamel, uname2) must be preferentially independent of the

other attributas.

Finally, on output, INDIF1 prints a number in paren-

thesis as a second factor by which to multiply the current

ki
,s. If multiplied by this factor, the new k.'s will not be

consistent with the indifference pair input. However, these

new k.'s will yield a k identical to that of the new k.'s

derived by using the non-parenthesized factor. In practice,

although not consistent with the indifference pair input, the

-98-

"alternative" k.'s come close to being consistent. Sometimes,

the noi.-parethesized factor will yield k. 's which are not

allowed in the multiplicative form; e.g., k. > 1 for some i.

When this happens, the parentesized factor can be tried

instead. Using IMAP, with these alternate k.'s, we can see

if the indifference pair consistent with these alternate k.'s r • i

is close enough to the original pair used in INDIF1 to justify

use of the parenthesized factor.

-99-
APPENDIX B

MUFCAP PROGRAM LISTINGS

RtlfCAF: PROC OPTIONS (RAIN);
DCL DOlflT A7EA (12eC0) BASEO (POTe) ;
OCL (E«PTY,NÖLLrOMSOn?Cp) P'JTt.TlN;
DCL (BIGK,1NIPXP) *»1TPY FYTF^NAL;
OCL RORD(10) CHAP(12) ,?Ft.AG BIT(1),'IF BTT(1);
OCL CORHANC (2S) CH*P (12) INIT ?• I NPUT» , * SA VE», ■ *vAn» ,

•DEBOG'.'AOOALT», »P»1PAL?\ »FVAL« # »"USET« # "PSET" f «RPAO1,
•IMCIP1» .»IND^» »»ONICA ' ,» IW?PS?»,
•CHAHGEAL?»,sCHANr;»», »AL IST», • MSPt AT« , • F9ACTTL?» ,

•LOTTERY»,» IRAP» ,»STi «-•,» DE T/P^DDU«,« SVI ▼?!!•, eTRT»pwri) .
ocL norm PILE PZCOPD JFCUENTIAL;

DCL PROC(26) LABEL;
DCL CLIST (3** OPPSFT(Hffm) ST*TIC;
DCL ÖTMAB!:(.', ST1TTC CHAP(12), NTTN STATIC;
DCL NGSAD STATIC ,G?A P PC) STi^lCAP BIT(1);
DCL HSffB (31) STATIC , XIN(15),GF PTT(1);
DCL (MAT, NC,ICALT,IPUT) STATIC, .UPY(2) PIYED;
DCL CARD CHAP(BO) , AMARU CHAP (1 2) ,FM A«E CHAP (12);
DCL (J1,J2,R1,K?) FTX*D,YTN(15) ;

/* DEFTNE AREA »0!t BAS»n ALLOCATIONS */
DCL 1 IIST BASED (LISTPTP),

2 PIPST CP»S2T (DURRY) ,
2 »AIPALT (5) C!U? (12) ,
2 RARCALT (10) CHA» (*2) ,
2 BODY APEA (12R00) ;

/♦ HIILTTATTRIPOTE UTILITY FUNCTION STRUCTURE •/
DCL RtlFP PTR STATIC;
DCL 1 «DP BASrn (RO»P) ,

2 CAPR,
2 RHARF. CPAR (12),
2 MORAT,
2 S0BAT(12) ,

3 CHAINP CF'SET (OORRY),
3 SFALLK,
3 rjNIPlR 0*PScT (DORRT),
3 ORARI CHIP (12) j

/* OMIATTRIBOr? UTILITY PUNCTT0N S*R0CT0F2 */
DCL ORIPP FTP STATIC,
DCL 1 ONIP BASpD(MNIpr>) ,

2 0L0# 2 HRI, 2 OTTTE PIX*D,
2 CALT(K), /• CEPT. ALTERNATIVES */

3 CATX, 3 P"C,
2 OXP(1S), ? uvppM, 2 »in?,
2 PALT (5), /• PPOR. ATT^RNATIV'S •/

3 *T, 3 XP(9) , 3 CF(9), 3 EOP;

/* miTIAlT^» */
ALLOCATE LIST; R!)TN*0; P0TP*ADDR (BODY) ; RC0«»»2'>; G»»»"»B:
DO 1*1 TO 5; NA"PAL?(I)=» •; FND;
DO I«1 TO 10; VA'CAL^d)»» •; "NO;
pnT SRIP USTfCCflHAND «0?D AND FILE RAH*S !10S? BE TN CA*S»);
CH CONVERSION P'GTN;

DCL P FLOAT; IF ONSIOPCE* • nrilTt THEN PO;
FOT SRIP I.TST (»POSSIBLE STATns CHANG». MNDO PARTIAL OP.»);

C1C0K10
0000002^
ooooro*?
ooocoom
oico^o
0C0"»1r*',

00CCDC7P
010000*0
coooini
010*010?
0000^11°
00C0112C
0000013''
00C1114
CO0C015D
coreov o
0"001 V'C
00090'RC
0000119°
0^00';?0^
oic:>2ii
00009220
00CC1230
000*02«^
0100°25^
0^0*26°
0100127C
0i0002P°
0000029"»
oioooior
00000311
0)00032?
oic 10:30
00CO3U0
01CW>9
000003*0
00000.^70
OOCOUP*
030O0390
cmciuo^
OOOO'»« 10
O000OU20
000 oo (i ic
C3000üün
COOO^üSO
OTOOOüfiO
OOCO">ü-»C
0"»oroü8o
03oooa«i
O'JCOOSOO
010C0S10
0900152*

0"iooosao
C10C05Srt

oooo^^^^
01100071

-100-

0.820225.11940.iaPCAP.PLI

60 TO GETCOH; END;
POT SKIP EDIT pNSOURCE, • IS «fOT A VALID 1I0NBEP.«,

•IHPOT TH» CORPFCT NU«RFR :«)
(COL (2) , A (LENGTH (ONSOURCE)) ,\,k) ;

RET LIST(P); ONS0U*CE=«>; END;
ON OMCEFINFUPTLF ("U'TLE) 8*GIN;
POT SKIP >T(«FILES 1ÜST PE ALLOCATED AND FTLF NAHES IN CAPS«):
GO TO GEUJN; PND;

/* COFIIIAND PROCESSOR SFCTTON */
GPTCOü:
POT SKIP LIST(«CC1HAND? ;«);

CALL GETLIN»;
DO KC*1 TO NCOH;
IF «JORD(1)=CONf!AND(NC) TH'N GO TC i>Prc(NO; END:

POT SKTF EDIT (WCPD(1),« IS »JOT A V\LTT) COHNAND.«,
• (C0HHAND WORD "UST BF TV CAPS)«)
(COl(2),A,A,A) ; GO TO GFTCO";

PBOC(1): /* «INPUT« */
IP HCRD(2) =• • TMFN EC;
POT SKIP LIST^NANF PCR «UP PLEASF? :«);
CALL GETLINE; WORN (2) = W0»D (1) : GO TC P71C(1); ENO;
pnT SKTP LI3T(»H0W 1ANY ATTRIBUTES AP" IM THIS P!UF? ;•);
GET IIST (NAT); IF NAT <=C THEN GO TO GETCOH;
DO I«1 TO 5; NA»PALT(T)=« •; END;
DO 1=1 TO 10 5 NANCALT(I)=« •; END;
BODY«ENPTY; ALLOCATE fin" IN (30DT) ; "NA NE=«OPn (2) ;
FIPST*1JPP; CAPK=0; NUJAT'NAT; CALL GFrfHLT; CALL SETOPP;
60 TO GETCO«!;

PROC(2) : /* 'SH" */
TP WORD(2)»« • THEN 00;
POT SKIP LIST(«»ILF NAH' FOR SAV* FLEAS!? :•):
CALL GETLINE; »ORD(2)*W0*D(1): 30 TC P°0C(2); END;
OPEN PILE(HC'ILE) TITLE (WORD (2)) OUTPUT;
»RITE FILE(f1UPILp) PRCN (LIST); CLOSP FILE(HUFTT2);
GO TO GETCON;

PR0C(3): /• «PEAC« V
IF W0RD(2)«« • TH*N DC;
POT SKIP LIST(«PIT,E NAHE FOR READ PLEAS!9 :•):
CALL GETLINE; WO*C (2) =WO?D (1) ; GO TO P*>0C(3); END; .
OPEN FILF(NOPILP) TITLE (WORD (21) INPUT;
READ FILE(IUFILE) INTO (LIST); CLOSE PILE(flUPILE) ;
CALL SETOFP; GO TO GETCOfl;

PFOC (tl) : /* «DEPUG« •/
POT SKIP EDIT («STRUCTURE POP • ,PNA".P) (COL(5) ,A,A);
DO I«1 TO NUTN;

HOFP«OLIST(I); PUT SKIP PDIT (UTNAN! (I),SUBAT (NSUB (I)).SNALLK)
tC0L(2),A,P(<>,3)) ; IF SUBAT.CHAI IF (NSUB (I)) «HULL ""REN DO;

0rUPP»S0BAT.UNTT>TR(NSn3(I)); PUT SKIP LIST (ULO,UHI,UTYP*) ; SND;ZND;
GO TO GETCOl;

PR0C(5): /• «ADDAI « •/
IF »GPD(2)*« • THEM DO;

000P05H0
COOCOSPO
0300060^
030COMO
00000*20
ooooo*?o
OOOOOfJU^
0300065^
OOOOOf^
003^K7n
OOOO^KflO
C00C0K90
000C070C
0?0C0?1^
Goroovi'O
0300*73^
000C07ÜH
ClCOO?«»^
0^0007*3
0^000770
000007BO
03000790
nocoofioo
oiroomo
03nC3«*2n

OOOCOPü*
PTOCnfTO
O0CO3P*0
000^0«70
OOOOrpflO
cooroe^o
0300090^
00000910
00000<>2*>
OOOOO'HO
C00009UO
000009SO
000009*0
0000097C
070ft09fl0
0000390^
OOGOKO^
00001010
030010 20
O3CO1030
0-3001Ott*
0000105"
OOCOIOftO
03C01C70
070M 0P1
oooo 10«^
0)00110'
03001113
0^C0H7*
oooomo
000^1 mo

-101-

0.«20225. 119tt1. HUBCAP.PLI

POT SKIP LIST(»NAflP PC» ALTFCNATIV* FL^AS»? :•); O^HI-I
CALL GFTLTNE; WORD (2) =WOFD (1) : GO TO F^OCf*); FtfP; O^OCMK«
ANA«E = 'rfOPP(2) ; I* U0PD(3)-=» • TH'N PO; A?«M«C; C10?117^
PPLAG=«VR; *F*C=WPPC (3) ; GO TO C2f»T; 5N«; FT SF ^««O'B; CJP01*Pn

ANABE = VOPD (2) ; PUT SKI» LTSTf'TS ALT. P">OR-> JYTS 0? NO):M: Mr-fllO*
REPLY5: CA!l 07TLIWE; T» WOPD (1) = p Y *5« TUEN PFL AG-" • 1« B; C 0 0 0 1 ? ? 0
ELSE IP H0PD(1)S,N0« THEN Pf LAG«« 0» B ; 0 ^ C ? 1 ? 1 *>
ELSE DO; PUT SKIP USl (,nE?LY *ns? BF Y7.S nr NO T« CAPS •); C"C*1J?21
GO TO R5PLY5; END; O^OCi?^
IP PPIAG THEM P"1 T = 1 "0 5; 000012«*
IF NAH»ALT(I) = » • TH'N DO; 00r0125".
KAHPALT (I) =ANAflF.; IPAIT«I; GO TO PP0C5B; »HD; 0*C*>12*0
IF 1=5 THEN 00; O^CC1??0

POT SKIP FDITfONLY S PF1P. ATT'PNATTVSS ALLOVFP. », 0*OH?P^
•CHE SHOHLD R? DSL2TCD. (STATUS CAM BE SAVED» TOC)•) 0^^012^0
(COL (2), A, A) ; 00*ai30P

GO TO GETCC"; EMI; ?MP; O^Oni"
ELSE CERT: no T=1 TO 1C; 00C0132"»
IF MA»CALT(I) = • « THEM no; OOOOnn
NA»1CALT(I) «ANARF; iCALT=T; GOTO ?»CC5B ; END; 0*CC1?^
IF 1=10 TH»N EC; OOCO 1 350
POT SKI? LTST(«ONLY 10 CFPT. ALT. ALLOWED«): 00CH364»
GO TO GETCCf; ^"; ?NC; 070C1">7C

PP0C5B: PUT SKIP rT>TT (»ALTERNATIV* «»ANARF,» SPECIP.») (A, A,A); O^CCn*"1

DO 1=1 TC NaTN; 03C013OA

HOFP=OLIST(T) ; .1*NSÜB(T)J O^OOlüO^
IF SOBAT (J) ,CHAIN»«N?ILL "*RFN ^O; OOOOlUn
ONIWP=SnBAT(J) . riNIPTRj OC01U2 ^
CALL ALTCPRP; «"NO; FNC;GO TC O^TCIfl; QC001U30

ALTCCHP: PFOC; OICOU*'*^
/• KIEDS ItPFLAG,TCALT OR IPALT,*P AND MNTPP SrT •/ 0C0niU5C
/* SETS TRF COR^ONENT POP AN ALTERNATIVE */ 0O0C1U*0
IF PFLAO TREN DO; CJGOUP"
POT SKI© EDIT(»HOH RANT FF^CTILE *TS. (INCL 0 AND 10C«) "OP •,C?0'?1UR0
OTWANE(I),» (2<=N<=9) : •) (A, A,A); 0*CC1UQ?
GETLYST(N); PALT(TPATT).v?=V; 0:CD150*

POT SKIP LISTt^NPHT TMF CUP PUNC »(X). X»»S PIPST THEN F(X)«»S«); O^C^ 1^ 10
GET LISIf (XIN(J) r»C 1=1 TO N)) ; 01CH 52"'
IF OHK0L1 THFN DO T= 1 TO V; »AL T (IF ALT) . XP (J) = O^OOlSin
(XIH(N-J»1)-nLC)/(!JRI-TTL0t ; »SI; 0*CM5!O
ELSE DO J=1 TC N; PALT (TFALT) .X P (J) * (XI N (J)-OLO) / 00001550
(OHI-DLO) ; FND; O^OI^O^

GET LIST((XTN(J) DO J=1 "0 N)) ; 0P0015^C
IF tlHKMLO THEN DO J= 1 TC M; OCCOISR^

- PALT (IFALT) .C? (J) =1-X1N (N-T*1) ; PND; 0?C01590
EISE DO ."»=1 TC N; PALT (T TAT T) . C? (.1) *XTN (J) ; ^NH; 010G16CC

• /• ABOVE INS0P7S TH^T INTERVAL **? 0* CUP PMNC »3 OKAY •/ ^^OOlfil^
CALL ONIR(J(IPALT,ANS; ; PALTJI^ALT) . FüT= ANS; 00001^20
BUD; 0100:611
EISE IP -AP THFN DO; rrjT SKI« ?M«t FTNANE (I) , •«: •) (A,A); C0OC16UD
GETLIST(X); X=fX-ULO)/ (UHr-ML^) ; CALL fNTCAL(X,A»S>, COCOIfi^l
CALT (ICALT) .CALX = T; CALT (ICAL^) . EtlC = ANS; 01CG1*')C
END; ELSF DO; CALL RNTCAL (A» KQ. F.1C (ICA LT)) ; CCCOifi"^
CALX(ICALT)^,» MC; END; END ALTCO«P; O^COI^RC

0000160^
PFOC (6): /• «DP^PALT •/ 0^017*1

IF »0PD(2)=« • THEN DO; 000017V.»

r
-102-

0.P20225. 119*0.HUPCAF.f LI

POT SKIP LIST (»NAHE PCR ALTERNATIVE PLEASE? :•):
CALL GETLTN!; RORP (2) =WOPD (1) ; GO *o PPOCff) ; END;
AKAN»«1*0RP(2) ; DO 1*1 T"> 10; TP NAHC ALT (I) ^A NA*? THEN
RAHCALT (1)=» •; SNP; no 1*1 *0 S; IP NMPALT(I)^
A NAME TRE.J NAIPALT(T)- • •; END; GO TO GFTCCN;

PF0C(7)s /»E/AL •/
CALL PR0C7A; HO T^ GPTCC«;

PP0C7A: PROC; IP W0FD(2)
OP««0«H;
GO TO PFCC7C; FND:
DO I»1 TO NÖTN; T» UTNA»* (I)-»nRD (2)
PUT SKIP LIST^A???!* ID* POUND»); B

PR0C7B; »UJFP=0T.7SI (I) ; I? SUBAT fNSflB (t>).
ORIFP«St!BAT(NSUB (I)) .KNI^T"; '!»■• 1»P
ELfE DO; UP»1 0*3; PU?P»SP«n? (NSHB (T)

PR0C7C: IP R0PD(3)*» • THEN GO TO PF0C7F;
J«2:

PP0C7D: J=J>1; IP WO^DfJ)"1 ' THEN PE^U^N
pPLAG*»0»B; DO 1=1 ^0 10; ICALT = l'; I
THE» DO; I» HP THEN ANS = CUT (T) . £UC;
POT EDTT(NAPCAL7(I) ,ANS) (C0L(2),A,X

IP (GPChltP)) THEN CALL GFTf^AD;
GO TO PP0C7H; END; EN";
PPLAG«M»P; DC 1=1 TO 5: I»AL?=I; IP
DO; IP 0» THEN ANS=PA IT (T) . S'TP; ELSE
POT EDI?(NAflFALT(I) , A ?JS) (COL (2), A, X

IP (GPC(-nP)) THEN CALF, i.ETCPAP, 13 TO PH
EHD: END;

PR0C7»; PPLAG=»«»B; DO 1=1 TO 10: ICALT=I
00; IP HP THEN ANS^CALT(T) .EtJC; FLSF
POT FDIT(NANCAtT (I) ,ANS) fCOLfO»,A,X

IP fGPC(-.OP)) "•HFN CALL GETGPAD;
IND;FND;
PPLAG*«1»B; DC T = 1 TO 5; IPALT=I; IP
W: IP OP THEN HS=P!r (I) . -'TIP; FLSF
POT FDITfNABFALT(I) ,ANS) (C0L(2),A,X

IP (GPG(-»OP)) THEN CALL G"TGPAD;
BUD; END; RETD»N; END PP0C7A;

PNAHE THEM DO; BHPP^PIPST;

THFN GO TO PR0C7B; END;
ETHON;
'"HATV»=N"LL THEN DO;
; END;
).CHATNF; »ND ;

* NAPCAT.Tfl) =WOPP(J)
ELSE CAL . FULTEV (ANS) ;

H) ,F(8, ,) ;

NA«!PALT(I)~»0?D(J) THEN
CALL rtJT.TFV(ANS) ;
P).P(*,3));
CC7D;

; IP NAHCALT(I) -=• • THEN
CALL HOLTEV(ANS) ;

NAHPALT (!)-.= ' • THEN
CALL nOLTEV(ANS) ;

PROC (*) : /• »ONTSET» •/
CALL ÖNIGPT;

PROCRC: IP W0PD(3)=» ■ THEN DO;
POT SRI* LIST^TYPF? :•)! CALL GETtINF; »OPD (3) «WORD (1) ;
GO TC PROCOC; *ND;

IP »OPO (*«)S,C»» THEN DH;
POT SKIP EDirpiNPCT AMI ?1-S0 LOTTERY IN THE POFH OP .
• C.!„,01 t, 02. PLEASE») (A ,A) ;
GET IIST(CE,X 1,X2) ; IP UHIVU.O TH?N CO;
IL0*HI!f(I1,X2) ; XHI*«AXfXI,17) ; »NO;
ELSE DO; FtC = BAXfX1,T2) ; XHi=1IN (X 1,X2) ; END;
P»(0HI-HLO); Cr= (CF"OTO)/r ; XLO-|XLC-nf 0)/p ;
IHX« (IHI-ULC)/?: CALL 0NIEXP (CS,TLO#XHI,ÜXP (1),UTP (1));
OTTPE-1; END;
ELSE IP R0PDt3)~lLIN» THFN rjTTPS*0;
BLSP IP BOPDnj^'PL» THEN 00;

000*1720
010017 10
00CC17<O
COCOI"»'?
00001760
00001771
0C00 17B0
0ÜC017^
0TO9180n
01CC1P10
OOf01P2)
0'»CniP3')
OnCOIAU^
000018S-)
OlCOlofC
0^001870
OOOIBBO
03001P30
orooiQoo

O^OOIQ??
00001<»lu
0°001°ao

0^C0i9fi0
OiroioT?
o^ooi^^o
OOOOIQI?
OO0C2OO0
00007011
00002^20
0100201')
00002QU0
O000?nt;n
0"»0020n'>
O7OT2070
00C32^8*>
00002DO0
0000210^
00002110
01C02120
00002130
0OO021U0
000021^0
00002160
0O00217O
00C021P?
07C02190
0300220^
0O002210
07P0222O
0CO0223?
0"»0^22t-»
0^0022*^0
03002260
00C122•t',•
03002*90

1 J^i^ad^^if^if«'*»^

-103-

O.H2Ü225.110ttO.«rjFCAP.PLI

POT SKIP LTSTC'HO« WANT PTS. IN OTU F0»fC? :•):
GET LIST(N); PUT SKIP EDIT(»INprjT THE PUNC, I««S PIPST ',
•THEN U(X)«»SM (A,A) ;
GIT IIST((XIN(I) DC 1 = 1 r>) H)) ;
SET LIST((0YP(T) DO 1=1 TO N));
■or«»;
IP UFI>0LO THEN DO 1=1 TO N; fJXP (I) = (XIN (T) -OtO) / ,'DHI -ULO) ;
END; ELSE DO; DO 1 = 1 TO N; n*o(I)* (TINfN-T*l)-ULO) /
(0BI-0LO) ; XIN (>*-:♦ 1) = UYP (T) ; rND; DO 1 = 1 TO N;

DTP (I) = XIN (I); END; !N*;
0TYPE=2; END; ELSE DO; P'JT SKIP LIST|«OSI» TYPE NOT VALID»);
GO TO (iFTCCI; END;

/♦ UPDATE EXPFCTED UTILITY POP ALTSPNATHFS •/
DO 1*1 TO 5; IP NANPAlT(I)-. = » • THEN CULL HNTEH (I, PI LT(I) . EÖP)
END; DO 1=1 TC 10; IP NA"CAL^(Ii-»=• • THEN TALI
OIIICAL(CALT(I) .CAT.X,CALT (I).PrjC) ; EKD; GO TO GETOI;

PROC(9) ; /* »KSET */
IP WOPD(2)=FNAHE THEN DO; VI FP=BTRST; GO TO PP0C9C; END;
DO T«1 TO NUTN; IE OTN AM E (I) = WOR D (2) THfiW 00 TO PR0C<»B; PND;
PUT SKIP LIST^ATTPIB NOT "O'JND»): GC TO G^TCO";

PR0C9B: BüPP=OI.IST(I» ; IP SÜBAT (NSIJB (I)) .CKA INP-NPLL THEN DO:
POT SKIP LI5T(SA?TPTB IS NOT \ NfJP«); GO TO GETCOFiJ END;
W0PP«S0BAT(NSUB (I)) .CHAIN?;

FB0C9C:
IF W0RD(3) =»ADD» TH*N DO; SU«1K=C; 10 T = 1 TO MOBAT;

SOHK*SaiPr*SUPÄT(I) .SPALLK; ENT; FACTOR« l./SOBKj END;
ELSE IP N0PC(1) »•OVERIDE« THFN DO; «OFD (U) = WOPD (3) ;
f0PD(3)=« •; «N^;

' ELSE IP W0PD(3)^t • THFN PACTOP*BOF D (3) ;
TO I»1 TO H01AT:
IP WORD (.!)»• • TB** DO; POT *?DI T (SOBAT (I) .CJNANE, •* :•) (COL (2)
A,») ;
GET T.IST(SUBA?(T) .SBALLK) ; END; PLSE STTBAT (T) . Sf! ALLK = PACTCP *
SOBAT(I).SBALLK; END; I? WORD (U) *»OVFP.I DE» TH^N GET LIST(CAPK1
ELSE CAPK=BTGK(S1ALLXr yrrwAT') ; PUT SKI» EDIT(•BIGK=«,CAPK)
iCOL(2),A,X(1),E{B,3)) ;

GO TO GETCN;

PROC(lO): /* OPJD */
GF»M»B; CALL PP0C7A; GP**0'S; GO 10 G2TC0B;

/• PR0CED1PE TO RESET OFFSET LIST •/

SFTOFF: PRCC; NOTtUC; «OFP*PTPST; PNABE=PNAHE; CALL PFEETOP;
END SETQ»»;

RESBTOP: PROC .-»^CUPETE;
DCL TF1P PTF,I FIXED;

DO I«1 TO NflBAT;
BUTN=NOTN» 1; rrNABS (NOTN) = S',8AT(I) . UNA" U
OITST(NOTN) =Bnrpj NSMR (MOTN} «I •
IF SHBAT (I) .CHAINE^NTILL "HEN DO;
TFPP*B0»P; NHPP^SOBAT (I).CHAIPP;
CALL »ESFTCP;

/• IOPHNG HP */
«OFP*TEBP; INE;

BAD:

O0C122<VO
0J0C23C0
00002310
01002320
000*23"»*
00002340
0"CC2?S0
01002360
0000237^
0')00?3B',

00002 1Q1
0)00?U0'>

00002U1*
;0*)0^?U20
00002U30
00002ÜU0
00002U*0
ooo<?2U6C
0 1002U">C
0T0°2unr>
03CC?t;<n
00002^00
0^002^10
00002520
0OC02530
OOOOO^Q^
0..0 02SSO
0)002560
0^002570
000025B0
010C2590

,00002600
00002610
0">0*2621

;O00C263O
OOP02SUO
0000265*
03002660
00002670
0000268?
0)002690
0D0O2TÖ0
0000 2"MO
0^^02720
00002730
0">CC270'-.
00002750
00002760
0000277^
00OO27A0
000C2790
0'J002800
Ö300281D
00002B20
0000293^
00002BÜO
00002««)0

„■^.w.iipiiiijiu mi, 11 -Mw^m^ppw

-104-

O.R20225. 119«0.«ri»CAF.FI.I

PETfIRN: ENC PFSFTCF;
/• PPOCEDUPS TO HAKE N*ST */

GFTBOLT: PPOC RECURSIVE;
DCL IFHP PTP, I FIXFO;

11: oo 1=1 TC PUPAT:

POT SKIP FDIT C« IVprjT NA«E AND "^T FOP ATT'» 9
tlr*Cr UTTL FTTNC »,

■NAHE) (CCl(2),A,P(2),T(1) ,A,A) ;
CALL GETLINE; SOFAT (I) . UNA«E -WCPH (1) ; R1«V0Pn (?) ;

P2*R0RD (?) ;

IF R1*R2 THEM *0;
POT SKIP LISTf'HOW 1ANY ATT». A« P. TH THIS HOP?:1):
GET LIS" (NAT); •"EPP^P'JPP;

/• CPEATE A Nr» "OP */
ALLOCATE BÜF IN (PCDY); NHHAT-NAT;

TEf1P->ST!3AT(I) .CHATNP=PUPP;
HMAHE-TP,!P->SUPAT (I) ,'JNA-E; CAPP=0;

/• PECÜPS'VZ CALL */
CALL GETfHLT;

/• POPPING rj? AGAIN A»T*P RPCTPSTON */
finPPsTEHP; END;

ELSE CO; SOPAT (I) .CHAIN» = NTILL; ML0CATE TINT? TN (BODY);
SOBAT(I) .UNIPT?='JNI»P; OTTOE-0; nL?=«M; nPI=?2;
END;

SPBAT (I) .SRAlt*s1./?m!MT;
END L1j

BETOPN;
END GETPUtT;

/* PRFE PORflAT PFAD C*PD PCTTTTNS */
GETIINE: FPCC:
CCL (T,J,K) FIXFT5;
DO 1*1 TC 10; WOPCd)*« •; 2NP;
GET SPIT (CARP) (A (PO)) ;
1*1; Ml;
DO WHILE(T<=8C);
IF SQBSTR (CAPH,I,1)=» • THFN GO TO CONT;
J«1; IF I=PO THEN GO TO GOT;
«ORE: IP SOBSTP (CAPD,I*,7, I) =• • THEN GO TC GOT;

J*J*1; IP (I*J=P1) IRFM GO TO GOT: GC TO POPP;
GOT: »ORD(K) =Sr?PST? (CARP,T,.1) ; K = K*1 ; I»I*J-1;
COST: I«I*1; END:

BETORN; ENC aETT IN*;

ORICAL: PPOCfX,ANS):
/• ÜNIFP IS ASS1"?n POINTING AT TH" PROP»» 'JTLTTY *nNCTION */
/* FROCEDUFS TC CALCOLAT" THE tJTTLTTY OP A VAI.O* •/
CCL J PIX*C;
IF UTYPE=C :HpN PC; ANS=X; ->ETU*N: END; /* LINEA? H(X)=X */
/• CONSTANT PTSK */
TF UTYPE=1 THEN CO; ANS=OTF (1)* (1-EXP (-OYF (1)*T)) ; »PTOPN; END;
/• PTFCEHISE LTN^AP •/
-P 0TYPF*2 TR°N CO;
IP *>«1 THEN ANS*1.* (ttY?(NUP)-UYP(M'TP-1))/{0XP(NnP)-aXP(NnP-1))*

01002«fi3
OOGO?P7O

000O?flPi
09002*90
0000290:

0Kr2T,r

00002931
090O29U1
09CC29S")
00002960
0^C0?O70
OOC^QOT
03002^0
coocnroo
00^301*
03003*?"»
0">CC3n*
O0OO3ni»o
0000315°
010030f
C90*3C7fl
090*309*
09C03r«*o
09CC310*>
0001311°
0-»00312-"

000031U1
00003151
OOC03161
C0003170
000P31O0
0'»10319*
000O320*
0^003211
0000322"»
00003*»30
0C*032U"
090*325?
00003250
030"3?7f>
090032*1
000O32O0
010*3 30 9
00003310
0000332°
0^0^333^
09003'«>0
010^3*:
090033**
931C337*
000033 fn
OOCC.liat
OOCC3üO^
09003«1'»
0 DC03u2'<

-105-

0. «20225.119(10. BüFCAr.PLI

(T-1.);
ELSE TF X<*0 THFN ANS* 'UYP (2) -fTYP (1))/ (OXP (2J-OXP (1)) *X ;
ELSE IF (X<1 t X>C) THEi» TC;

CO J*1 TO NOP; TF OXP(J)>X TH»N GO TC CAL; END;
TAl: J«J-1;

ANS*OYP(J) ♦ (UYp (.i*i)-t?YP (.i))/ (uxp (J*1)-öXP(J)) *{x-nxp(j));
IBTORN; ENC,
EID ÖMCAL;

OMI?0:PPOC (MALT,ANS):
/• PROC TO CALCULATE PXP. UTIL FOR ONIAT. TTNIFP ASSOF'D SET •/
DCl (J,NX,J'J,JPf KL) PTXED;
OCL ISO C*) .S» (•) fXX(») ,9(*M CONTPOLLFD;
DCL 1 ALT, 2 NPA, 2 XPA(9), 2 CPA(9), 2 FOA;
AIT*P»LT(NALT) ; ANS=0;
IF l»TYPF*0 THFN DC;
DO J»2 TO NPA; ANS* ANS* (CFA (.7)-CPA (J- 7>)/ (XPA (J)-XFA (J- 1)) *
(IFA (J)MFA i.7)-XFA |J-1)«XFA l J -1)) /2 . :
EID; RETOFN: END;

EIS? IF UTY»F=1 THEN DO:
DO J»2 TC NPA; ANS* AN S* (CPA (J) -CPA (J- 1))/ |XFA (J) - 7 PA (.7- 1)) •
UXP(1)* (XPA (J)-XFA (J-1)*(EXP(-0Y«M7)*XPA(J)) -FXP (-»7YP (1)*
IM (J-1)))/nYP(1>) ; FND; RFTORN; ENO;

ELSE IF 0TYPF=2 THEN 00;
JP»1; DO JU*1 TO NOP; IF (UXP (JO) >XFA (JF)) THFN GO TO ALOC? 2ND;
/* INTEGRATE CNLY VHF*E SCNE P?OB. TS */
jrtatfinp; /* THIS LAST S'FT. IN CASF 'IF »ALL OUT OF LOOT */
AtOC: NL»NPA*N0P-.7U; ALLCCATF ST (NL) , SF (NL) , XX (NL) ,B (NL) ;
/• HI IS HAX NOFEER 0» INTERVALS PPOUIRPD •/
*S-0;
DO J«1 TO NL; /* POT INTERVALS IN ORDER V
MX«NX*1; IF T?A(.7F)>1 THEN GO TO INC.7F; IP UXP J,70) <■* XPA (JF)

XX(*X)*OXP(JO)
JF«.TF*1; END;

ILSE IRCJ»: !>0;
IX(NX)»TFA (JF)

IF (JP>NFA) THEN <5C

J!J».in*1; I" (lXP(t1lf-1)«IFHJF) TH*N

END; .1F*JF*1
TO 7 PER!);

ZF(IX(RX)<HIX(NX)>0) ?H2N DO;
SO(HX)»(ÜYP(.70)-iJYPf.7ü-1)) /(OX» (.70) "nxr MO-1));
M»X)«OTP(JU)-SO(VX)*OXP (JH) ; »ND;

ELSE IF *X(NX)<*0 THEN DO;
STMNX)«(0YP(2)-UYP (1))/(nXP(2)-UXP (1));
B(BX)«0YP(2)-SU (NX)*UXP(2) ; 'ND;

ELSE IF XX(NX)>-*1 THEN DO;
SO (NX)* (OYP (NTJF)-rrYP (NHP-1)) / (UX P (NOP) OXP(NOP-I)) ;
B(»X)«OYP(NnF)-SU(NX)«OXF^np) ; fMD;

SP(MX)«(CFA(JF)-CPA(JF-1))/(XFÄ*JP)-X»A(J'-1)) ;
END;

LPENO: DO J»2 TO NX'
AES-ANS4S0 (J- 1) *SF (.7- 1) » (XX (.1) •XX(lf) -XX (J-1) «XX (J-1)) /2.:

MS»*NS*SP(J-1)««UJ-1)MXX(J)-XX (»1-1)) ;
/♦ XNT|K(flX*9n*K(NX«"2/2 *BX) •/

END;
FREE SU,SF,XX,P: RFTORN; IND;

EID ONIEO;

00003U30

00003051
o^.ooiafi^
0000307c
oocnufn
01003491
o">rcT>oo
00003^11
03'>03^2'>
0C003530
0">003500
000035^0
00003*60
0"»003S7.-»
00003SAC
oonoisQ^
O)C036G0
0000361*
00003621
030C363O
03003600
0^013653
0100366"
0000367O
01C036SC
010^3690
0CC037C?
0"*C03710
00003720
03GC3731
000037UD
0*003751

THFN DO;C10fl3760
d0"377C
0O00378O
00r03790
0300 3*00
00003RH
C0003B20
0C003B31
00003B00
00003B50
00013*60
00001B70
030C3HP*
010C3B90
0*00390*
C000301C
00OC3O20
O3C03Q30
03C03«UO
OCC03 950
00003060
00C73970
01^0398«
000039O0

■PI I _.l I ■»
mrnmm m ■mmmmm^^^

-1Ü6-

O.H2022S.11910.*OPCAP.PLI

BOOTET: PROC(ANS); KGrUD*"; CALL "TTLTCAL (ANS) ; RFTOPN ;FND H0LTF1T;
ROLTCAL: *F0C(ANS) rECrj"STVE;

OCl TFR» PTP, I PITFD, P FLOAT:
DCL TFHPO(12),NG«>(12) ;
IP CAPK=0 THEN DO; /• «DDITIV? "OPR */
INS*0; HO 1=1 TO »IIHATj NGMDsNrt^AD^I; NGP (I) -SG? AD;
IF SOBAT(I) .CRATKF--VMI.L TH?N T? PPLAG ?q?M
R*S0BAT |I) .UNIP^'-^PALTflPlLT) .EU°;
ELSE R*SOBAffIJ.CNIPT*->CALT (ICALT). EUC;
FtSf CO; /* NEED TO FVAL » SOP */
TEBP'-*»P; f»UFP=SOBAT(T) .CHAIN»; CALL 10L7CAL (R) ;
/* i'OP UP */ flUPP^T^P; F'JO;
' .<S*ANS*SUBAT(I) .S«ALLF*P; END;

) 1*1 TO NOIAT; GRAD (NGF (I)) «SOBAT (I) . SRAT.I.K; END;
TORN; »ND;

1 f DO; /* RULT. FOR«! */
AX -1.; DC T»1 TO NURAT; NG° An=NG°A t *1; NG? (I)«NGPAD;
IP 'tA^CD .CHAIRF*NOTL ^H^N I*1 PFLAG THrV
»•30w* (I) .ONirTP->PATT(IFALT) . EO»; ELS*
R*SOPAT(I) .ONTPT?->CALT(IC\L'*).»nC;
ELSE DC;
TEBP*RO»P; RUPP=S'JPAT (I).CHAINF; CAIl MULTC«l(R);
H0FP=TB1P; END; INS «A MS" (1 ♦CA'>K*£(IBAI (1) .SRALLF*P) ;
TEHPTJ(T)=R; FNH;
DO 1=1 TO NORAT; GPA C |N5 P (I)) =ARS/(1 ♦CAPE* SUBAT (I) . SRALLK*
TE«FTT(I))*SnpAT(T) . SRALLK; END;
ANS*(ANS-1)/CAPK;
RETO«R; 2ND;

END «OLTCAL;

GETGRAD: PROC;
DCL TBRP PTP.FAC'OP FLOAT,I FIXED,.7 FIXED;
*GRAD*0; PACTCF**!; CALL SE7GPAD(PACTOP);
ÜO 1*1 TO NÜTN;
J-I-1; TERP*OLIST(I) ; TF ROFP^TER» 1HEN GO TO GGPAD2; END;

GGP1D2:
IP -PPtAG TH*N POT SNIP LIJT
(•ATTRIB,OTIL. GRAD CORP. AND A?TR. GPAO CCFP.»);
EtSE
POT SKIP LISTf'ATTPI« f, HTIL. GRADIENT CCRPONEVTS«) ; .
DO 1*1 TO NGPAD;
IP -»PPLAG 9 0LIST(,7*I)->CHAIV» (NS'JR (I)) «WILL
THEN DO; hNIPF=OLIST(J*I)->UVIPT? (NSOB (I));
CALL OIICAL(CALXdCAT.T) ,P1) ; CALL 0 FTCAL (CALX (ICALT) ♦. 0 1, R2) ;
DERI?*(P2-P1)/(CALX(ICALT) ♦,01-CAtX (TCALT)) ;

. DERIV=DEPIV/(tiHI-nLO) ; POT 'PIT (UTNA »» (.7*1) jGFA^ (I) ,
GRAD(I)«DEPIV) (COL (2), A,X (1) ,P(A,3) ,1 (2) ,F (10,J)) ;

END;
EISE POT EDIT (OTNAH? (.7*1) .GPAOfl))
(C0L(2),A,X(1) , P(R,3)); END* pHT SMV(2); PFTURN:

PNC GFTGRAD;

REWRÄP: PPOCfPACIOH/ PECURST?F;
DCL TERP PTP, I *IXFD, FACT FLOAT;
DO 1*1 TO NORAT; NGRAD*NGRAD»1;

0100*00'*
oooouoio
0O00ÜO20
ooooio**o
OOOOacüO
000010*0
OOOOlOf
0OC0U070

0000109?
oocoiico
ooccnn
0000*120
?C00ai11
oooonoo
oooonso
00001160
00COU17C
oiocuso
oircuiQ^
00001200
07001210
00001270
0*»0"123i
O0C0171"
00001250
0*0CU?60
0000127^
00001?^^
0000^2^0
000rttt^0^
00001310
0100132"
000O<*33^
0^001310
00C0«35^
000013«n
0^001370
00001390
07001190
00001100
00001110
00001120
00001130
0000111O
CTOCülSO
O^Ofluttff
00001170
O700Ü1R0
070 oi mo
0O004500
00001S10
000C«520
000C1S3"
000015U0
00001S5"
OOC^I^

Ml ■'"" '

-107-

0. P! 2 0225.119H0.HÜPCAP.PLI

ip SOBAT(I).CHA:NF^*NOLL THEN no;
?EIP«H0FP; HÜFP*SURAT II).CfAIMF; •AC2»FACTOR*GPAD (NGRAP) ;
CILt SFTGRAD(FAC2) ; HUPP'TE«?: FND;
CaAD(NGP^D) =PACTOR*GRAn<NGPAD) : FND;
IBTORM;
EID SBTGRAO;

OIIGBT: FPOC;
DO I«1 TO NDTN; IF fJTNA«<r (I) =WOPD (2) TH»N GC TO HG»T«;
BID; ÜGETC: TUT SKIP MST(»ffVIF MOT *OUND«) ; GO TO GFTCCf;
OCETB: HUFP*OLTST (T) ; IP SUBA? (NSTIR (I)) ,CHAINF-.= MULL
THBH GO TO OGFTC; 0NIFP=Stf8AT{NS0B (T)) . TINIPTP; FS?U<>N;
FIO ONIG7T;

PROC(11): PKOC?12): /* IND7P1 AMD INDIF2 */
/• EASFD ON «QNATIOM n (X1 ,Y1) *tr (X2,Y2) WHEN
(X1,Y1) IS INDIP»EPENT TO (X2,Y2) */
CALL 6E*2: GO TO PPCC^C;

C5T2: PPCC;
/• ROÜTIN* GFTS 2 n»»S AND S*TS J1, J2,K 1,K2, np, FTJFP
JARTf)k AND I */
JABT(1) ,JAPY(2)=0; DO T*1 TO NNTN; DC J*1 TO 2:
IP IOPD(1*.T)*rJTNA"»E(I) TREN DO; JART(J)*I;
60 TC GET2B; END; FND;

6BT2B: IP (JA«»Y(1)>r r, J1PY(2)>0) THEN GO TO GET2C; »NO;
POT SKIP LISTflTTP. NOT P^TH FODND'); GO TO GFTCCK;

C*??C:J1«JARY(1) ;.72*JAPY (2) ; TF (^T.TST (.T1)--CI IST(J2)) THEN DO;
POT SKIP LISTfATTP. KOT IN SAP1F 1U*»): GO TO GETCOH; END;

. 10FP«0LTST(J1) ;
K1«BSnB(J1) ;*?=NSUP(J2) ; IF (CHAINF (K1) -.»NDI.l | CBAT^F (K2)-»»NHLL)
THEM CO; Uf*'C»B; PUT SKIP LIST(»IMFUT UTILITY VAir/FS») ;
EMD; ELSF 0F=»1»B; FETJPN; END GFT2:
PB0C1lC:Brpp=0LIST(T) ; R^SffPAT (NSUB |J2)). SMALLK/SNALLK (K1> ;
IP R0PD(1) ««INDI^1 THEN GO TO P°0C11F;
POT SKIP LIST {«INPUT AN INDIPPEPENCE PAIR PLEAS'») ;
SfT IIST ((XIN(I) DO I«1 To n)) ; IF -UP THEM GO TO ncAL1;
PC J«1 TO 2; 0MIFP*SD9AT fNSDB (JAPr (,!))).UNTPTR; DO I*J,J*2;
III (I)* (TIN D-ULC)/(nHI-DlO) ♦* CALL UNICAL (XIN (I) , ANS) ;
IXI(l)*ANS; EMD; END;
DCAL1:DES1=XIW (1) *XTN (2) -TIN (3) ♦TIN (4) ;
TF DES1«0 TREM GO TO PRCC11D;
■ m« (R*{XIN (U)-TIN(2)) *XIN(3) -XINf1))/(P*DFS1) ;
IF RATK«9 THEM DO; PK=C; GO 70 PR0C11»; FND;
BK«1; DO T«1 TO NUNAT; BK=8K*(U»ATK*SU3>T(I).SHALLK/
SOBAT(MS0B(.11)) .SrHLLK) ; ENH; BK=BK-1;
F»C1«RATK/(S«!ALLK(K1)»PK) :
F»C2«=-(<?BALLK(K1) ♦SflALLf (K2)) /(BK'SBALIK (K 1) »SI ALLK (F2))-FAC1;
POT SKIP FDITf I1PLISD NF» K»»S PACTO*(S) », FAC1, • (•, »»C2, •) •)
(COM2) ,A,P(8, 1) ,X (1) ,A,P(8,3) ,A) ;

PIC 'J IIP:
POT SKIP EDIT(«I1?LIFD NFW BIGK» »,BK) (COL (2) ,A,P (8,3)) ;
60 TO GFTCCH;

PI0C11D2 POT SKI» LlSTf'INDIP PAIR YIFLES IMFO ABOUT PEL K«»S»):
POT SKIP EDIT(»REt * CHPC*. CffFRENT RATIO •, B^PD(3)f» TO \
I0RD(2) ,*) {C0H2).k,k.k,\,h,?l*9mt
f(III(3)-XIN(in/(X.H(2)-TIN(0));
POT SKIP FDIT(«I.«!?LIED PATIO » »,R) (COL (2) , A,P (9,3)) ;

0K0U570
o^ocaseo
0D00Ü59C
OOOOöfüC
0*>00a610
O-T'CPUfi?^
0000Q6 3^
OOOOasan
ODOoa^so
00^0U^f>3
00COU6"»o
C000U6fl0
0?00<i6T">
0000tt700
0ÖC0U710
0000Ü720
0"0Ctt7 3C
00C0U7UD
0?00U7SD
00000760
0000U770
O0O0U7BO
01CC07Q0
0^00080^
C0OOMP10
O')0C1R20
ü-tOOUMT
OOOCU9U0
orocofl^o
oocr'j«f e
000CUR70
0W4fl8n

OOOOUPOO
oooft^n
0000tt<»20
00COH93O
0^C0a9UC
0000095^
0000U960
0300097^
0O0<*U9RP
OD000990
OOOOSGOO
O^OOSOI?
0^00502?
0)005030
OlO^SCUO
0000505^
0D0D5n6f»
C»005070
00005080
0^0^509*
00Ü051C0
000C5110
010C5120
00005130

.^■r. 'v ttjoüi« 17 W!'"-1- ■L-**w'

-108-

Ü.H20225.11940.»WFCAF.FIT

GO TO GBTCOP;
PROC11E: POT SKIP LTSTflVPTT 2 INDIFFERENCE PAIRS PLEASE»);

CRT tIST((XTN(T) DC 1 = 1 ?0 *) > ;
IP -»OP THEN GO TO DCAL2;
DO J=1 TO 2; UNIPF = SUBAT (NS"R(JA"Y(J))) .UNIPTR;
DO I«J,J*2,J*4,J*<;
UN (I)= (XIN (I)-tflP)/fnni-ULO) ; CALL ONICAL (XIN (I) , ANS) :
XTN(I)=ANS; END: ^ND;

/* CHICK EOTH TESCPIIINANTS F*R R'DONDANCY •/
DCAI2:DES1=XIN f1)*XIN f2>-XT»J(l) *XTM(U) :
DES2=XIN (5)*XIN (6)-XIN (7)*TIVfP) ;
IP fDESl = 0|DES2=C) THFN HO;
POT SKIP EDIT ('ON? INPI» PATR OBVIOUSLY YIELDS ?~L K^S. OS'V
• THE CCMHAND INDIP1 WITH IT TO CCNFA°E BITH criPRENT °ATTO»)
(COl(2), A, *) : oo TO GETCO*; *ND;
01*XIN(7)-XIN(5) -(XIN(3) -XIN(1)) «CE52/DES1;
02«XIN(6)-XTN (fl)* (XIN (4) -XIV (?)) *DSS2/*ES1;
IF (01=0|P2 = P) «"HEN DO;
POT SKIP LISTf'CANNOT D^TERNINr' PEL K»«S PRC« THES» ?TS.»)'
GO TO GETCC; END;
FAC1= (QV0 2)* (XTN (U)-yiN (?)) *XTV (H-XTN (1) ;
FAC1*FAC1/((01/02)«CES1) ;
POT SKIP EDIT(»3IGK=»,PAC1,"/* (' ,»0RD(2) ,•) •)
(COl(2),A,F|R,3) ,A,A,A) ;

XIN(3)=01; XIN(2i^02; XIN (H)#XIN (1)«0; GO TC PR0C11D;

PP0C(13) : /* UNTCAt, */
CALL ONIGFT; t? WnPD(3) = » • TH'N GC TO PR0C13C;

, N«M0PD(3); GET LIST((XrN(I) PO 1=1 TO N));
PR0C13B: TO 1=1 TC N; ?= (XIN (T) -T»LP)/ (OHT-ULO) ;

CALL UNICALlP,ANS) ; FUT EDI T (• a (• , XIN (I) , •) = • ,ANS)
1COL(2),A,F(10,3),A,»(R,'0);
fUD; GO TC GETCC«;

PR0C13C: XIN(1)=0L0; DO 1=2 TO 1C RT 2; XIN fUI/2) =UL0*1.?-1*I*
(0HI-ÜLO) ; ENF; N=fi ; GOTO ?P0C13B;

PR0C(14): /* «INVERSE» •/
CALI ONTGBT;
IF H0R0(3)=» • THVN GC """> PR0C14C;
n«»0Rn(3);
GET LIST f(XTN(I) f)0 T* 1 TO N)) ;

PR0C14B: CO 1=1 TO N; CULL ONINV(XIN (I),ANS); ANS = ULO* (HHI-ULO)
•ANS; PUT ECIT(ANS,»=INV (• ,XTN (I),»)») (COL (2) , P (10, *) , k,
P(4»3)tM: END: GO IC G^CO«;

PF0C14C: XTN(1)=Q; DO 1=1 TO 9 PY 2;
UN(2*1/2) «1.?-1*1; END; XIN(7)=1; N = 7; GO TO PR0C14B;

ÖNTMV: PROC(Y,ANS) ;
/• PFOC TO GP* INVERSE OR ANS=X| "(X)=T •/
DCL J FIXFD;

IF OTYPE=0 THEN DO; ANS=T; »FTHPN; IND;
IF 0TYPE=1 TRPN PC;
ANS«L0G(nXP(1)/(rrxP(1)-Y))/0YP(1) ; FETTTRN; END;

IF 0TYPF=2 TREV 00;
IF (Y>1«T<0) IHEN NESS: DO;
POT SKIP EDIT(T,» IS COT OP RANGE») (COL (2) , P («, 3) , A) ;

0000514P
o^cnsiso
03005160
00005170
000051RO
000051Q*
OOOf5230
OOC05210
0*«0052?^
03005230
00005240
000^52^
030*5?6'>
0*005270
0OCC52P0
030052^0
0300530
00005310
00005">20
0000533^
00005340
0900535C
00005360
0000537H
0^C053R0
O0C053<>C
.0300S4CO
03005411
0)005420
0000543^
0OP054ÜC
0OOC5450
0O005üfin
C'C05a70
0">Cr5aB0
03005490
030C*5C^
0il005«;i0
00005520
000^553^
000055 t'-«
C>0:5553
000055*in
00005^70
^3CC55Rn
000055QO
0orÖ560^
0300561^
0000^67?
00C05630
00005^4^
C»C05650
OOC0566-»
000^5670
03C056<»0
00005690
0*»0057C0

L

mrm •H-»-^iiw'"my<

-109-

O.H20225.119«l".HnFCAP.PLT

GOT:

AHS--1; RETURN; 'in,
DO J«2 TO NO»; I» (UYP(,7-1)-r)*fnY»(.T) -V) <«o THE:»
GC TO GOT; p*t>: no TO H?SS:
»MS« (T-OTP f J-1)) / (U YP (J) -HYP (.1-1)) • (UXP (J) -UXP(J- 1))
♦ OXF(J-I); RETURN; ENf; END UNiNV;

PPOC(1S): /• «CHANGEAT.T« •/
PPLAG««0«D; AP*«0«nf in I«1 TO 10;
IF NAHCALT(I) =WO*0(J) THEN DO; ICAlT»I; 00 TO CALLALT;
F.ND; FND; PPLAG»»1«B: DO 1*1 TO 5; IF NAHPHT (I) =WPPD(1)
T'JEN DO; TPALT=I; GO TO CALLALT; fNt; END;
POT SKIP LTST(»ALT»PN. NCT FOUND«): GO TO GETCO*;

CALtAIT: CALL UKIHET; /* SPTS UNI»? ANC I */
CALL ALTCOHP; GO TO GETCCH;

PP0C(16) : /• CHANGE •/
IF H0RD(2) = FNAfl* THEN GO TO PR0C16C;
DO I«1 TO NOTN; IF OTNAHF (I) »HORT (2) THEN GO TO P°0C16B; END;
POT SKIP LIST(«ATTPTD UT »OUND«); GC TO OETCOH;

PP0C16B: HnFP*OlIST(T) : IE CHATN»(NSHP(T))=NULL THEN PO;
ONI»P«nNIPTR (NSUD (I)) ; r J P - • 1 • B : END; ELSF UP*"VR;
IF NCRD(.I) ««NAHE« THEN DO;
OTHAHBdKnNAN* (NSHB (T)) =»ORD (tt) ; IF -*n» THEN
CBAINP(NSUB (I))->«NA!1E=S0«D(U) ; ENC;
ELSE IF HOPD(!)*«K« THEN DO;
SHALIK(NSUB(I))=WO?L(tt); CAP*=BIGK (SHAtLK,NOHAT); »NO;
ILSE IF (NOFD (3)='PANGE« ft HF) THEN DO;
POT SKIP LIST («ALTERNATIVE C01&ONEN1S NEED CHANGING«) ;
POT SKIP LIST («RANGE FLEASE:«); GET LIST (UL0,UHI) ;
I0RD(3)*' •; GO TO FSOCRC; END; GO 10 GFTCO";

PR0C16C: HO»P=PIPST: I» HOFD (3)■•NAHF« THFN FNAHE,HNAHE«»OPD(tt) ;
GO TO GETCCH;

PS0C(17): /* ALTLIST V
AF««0»B;
J1«0; DO I«1 TO 10; IF NAHCALT(I)-«• • THEN DO;
1F««1«B;
J1«J1*1; PCT «DIT(NAHCAL^(I)) (COL (12*J 1) , A) ; END; END;
IF -*AF THEN DO; PUT SKI«» LIST(«NO CERT. ALTEPN.«);
60 TO LISTPPB; END;
POT SKIP(2) ; DO T»1 TC NÜTN; NÜF^OLIST (I) ; IF CHAINP (NSUB (I))
MOLL THEN DO; UNIFP*nN IPTR (NS'fR (I)) ; PUT FDIT (UTNA^E (I))
(C0L(7) ,A (1C)) ; J1»0; 00 J«1 TO 10; IF NAHCALT (J) -*« • "»HEN DO

J1«J1*1; X*nLO*CALT (.))• (UHI-HLO) ; PUT »OIT (X)
(COL (12«U1) ,F (10,3)) ; END; END; END; END;

LISTFPB: A»»«O«B;
POT SKIF(2) HST(«C??i' EOUIV. TABLE »OP P°OB ALTEPN«);
J1«0; DO I«1 TO 5; IF NA NPALT (T) -»• • THEN DO;
»P»«1»B;
J1-JU1; PHT EDTT(NANPALTd)) (COl (12V 1) , A) ; ENO; »NO;
IF -»AF THEN DC; ?UT SFIP LIST(«NO PFOB. ALTEPN.«);
60 TO GETCCH; »NO;
POY SKIP(2J ; DO 1*1 TC NUTN; HUFP*OT.IST (I) ; IP CHAIN» (N5UB (I))
•KnLL THEN DO; UNI»P»UNI?TR (NSUB (T)); PUT EDIT (nTNAHE(I))
(COL (2) ,A (1C)) ; .T1«C; DO J»1 TO 5; IP NAP?ALT(J)—« • THEN DO:

J1«J1*1j CALL ONINVfEOP (J)fX); X*ULO*X» (OHT-ULO) ;
POT EDIT(X) (COL(12»J1)#*(10#1)) ; »ND; »ND; END; »ND;

0OC05710
0X05720
030C57 30
0*>0057t|O
OOfC5750
00005760
00^05770
0000570^
0000S7O0
CV0C5RC0
O*»OO5RIO
0)0C5R20
00005B30
00005B10
00005R50
01CC5H6^
000C5«7n

03005R90
01P0SQQT
09005O1*
00005920
000059?^
000059HO
00C05950
0000596C
00005970
030059RO
0000599C
OOO06C0O
0100501?
000*6*20
00006000
OOCOS^ü^
00006050
00PC6*6*
00006070
000060RO
00O0609O
0000610*
00C36110
0000612*
;0)C06 no
000061UO
00006150
03*06160
C0006170
OC0061R0
00006190
00006200
0000^210
0O0C6270
C"t006?30
Oirr62ao
0TC06250
03006760
0000*270

L

^„^r^^fmßmmmmmmmmmm "■"' ippüi wwpiwwwpppip

-110-

O.«2022S.119tt0.inpCAP.PLI

CO TO 3ETCCP;

PROC(IS): /• OISPLAY •/
IF IOP9(2) = FNANF. THEN
00 1=1 TO NUTN; T° U*
PUT SRI* I ISTfATT^IB

PPCC18B: iaPP=OLIST(T) ; I
üm?P=lHT?T*(HSim (T))
(C0L(2),A. (2)P(1^-«))
(•0TYP5 IS LTNFAP») ;
ILSE IP HTTP*«1 TH*tf
PUT SKIP LIST(»fJTY?E
POT FDIT(»P=»,0XP(1),
(COL(2),A,*f)*3) ,X(1)
IF UXP(1)>1 THEN ANA«
POT EDIT (»PISK'.ANAI
iwn;
ILSE I» UTYF*=2 THFN
POT SKIP LIST(» HTY^F
DO J=1 TO NffP; IP UHT
T«0TP(NHp-J*1); PSD;
I»!IL04X* (UHI-ULO) ; F'l
(COL(2),A,P(10,3),A,F
HOFP-CHATNF (fJSUP (D) ;

PR0C18C: POT SKIP LI3T(»LI
DO .7*1 TO NfJIAT; StfPIK
POT EDIT(01*AIP (J) ,S"A
POT SKIP FDIT |»*IGK=»
<C0T.(2),A,F(8.3),X(1)

DO; "frPP^TT^ST: GO TO »R0C1RC; *ND;
NA«!P(I) «»0R!>(2) ""HEN GO TO PP0C1PR; «"NO:

NOT »OUNP»): GO TO GFTCOI;
F CHATN»(NSU8 |T))«NULL TH»N DO:
; PUT SKIP FDIT {•: ANO*": • ,'!L"»,t»"I)
. I? fi^ynrsQ THrN PHT SKIP LIST

DO;
IS COMSTAM*" «15* !f(X)*Sf1«£fP (-CX))») I
•C-*,nYP(1) ,»YAPIA 1LE NORIALIZFO»)
,*,P(fl,3) ,X(2),A);
-=»fVFRSE»; PISF ANAHF = »P*CNE»;
F) (C0L(2),A.X(1) ,A);

ro:

?S PI*TEWISE LINEAR1);
<m^ Th**N CO; X=UTP(vrj?-J*1) ;
ELSE nn; X = r?xriJ); Y^IYPM); END;
r ?ci?(Mf(tfx#i)»irYj
(P,"»)); PND; END; GO TO GITTC1P1; rifn;

STING OP r »ACTORS«): S'If1*-C;
*SÖPK*S*MLt.* (J) ;
LLK(J)) (rOI. (2),A,»(8,1)) ; END;
,CArK#» sui T» »S = • ,SUH«T)
,A,P(*,3J): r»o ro RFTC:«;

PP0C(19): /• PPACTTL* */
CALL ÜNIGET; DC J=1 TC 5; IP MA "PA LT (J) «WORD (3) THEM
J5C TO e?0C19R; FND;
POT SKIP LIST (i ALT'PS. NOT »cr/ND») ; GO TO G*TCOP»;

PP0C1SB: POT SKI? LiSTf'CUl DICTPTB POP IMS ALTERN.»):
DO 1*1 TO VP(J); IF UHKOLO TH*N DC; T*PALT (»1) . XF [HF (J) -!♦ 1) ;
Y«1-PALT(J) .CP(N"(J)-T*1) ; END; FLSf DO;
X»FALT(.T) .XP(I) ; Y=»AIT (J) .CF (I) ; F&D;
X«0LO*X«(«HI-f7LO) ; FHT EDITf »Ff • , X, •) »• , Y)
(COL (2), A, P (11,3) ,A,P(8,3)) ; END; GC TO GFTCCP1;

PPOCJ20) : /* LOTTERY •/
CALL ONIG^T;
IF W0RD(3)-.= »CE» |W0FD(3) -.= »P» THEN 10;
K-RORE (1) ; I" N>1 THEN PO;
POT SKIP IIST(»T.CTT?BY FNDFTS. PLFA5!?»);
GET LIST ((XIN (.7) DO J*1 TO N));
POT SKIP LIST(»CTPESP. PP03ABTLTTIES PLFAS??»);
GET LIST ((YIN (.7) DO ,7*1 TP N) 1 ; Y = 0 ; DO J*1 TO M;
XI«(J)= (XTN (J)-TJLO) /(U»I-ML-)) : CALL r7NICAL (X IN (J) , ANS) ;
X«X«AWS*YIN (J) ; END; GO TO PP1C2CP; -NO; END;

POT SKIP LIST (»INPUT L'.'TTFFY FNDPTS. (P0TT01,TOP) AND THE CF OR P»)
GET LIST ((XIN (.1) DC .1 = 1 TO ">)) ;

DO J«1 TO 2; XIN(J)«(XIN(J)-fJLO)/(0PI-OL0) :
CALL 0fICAL(XIN(.7) ,ANS) J TIN(J)=ANS; END;
IF »0R9(3) «»CF» THEN CO;
X«XI1(1)*XIN(2) ♦(1-XIN(3))«XIN(1); FROC20B: CALL ONTMT(X, ANS) ;

0?0162«T
COOWC
0"»rC6300
01C0A31T
o)o*>^ir^
O001fi31^

0^016360
0000617^
0O?0^?R^
3 ICOfi 10-»
0"»Cr6a)0
OlCOfUlO
(TCOGu:!*

0^016tt'iC
0)00^ÜS1
oicj6i*n
0000AÜ70
o:o^fiuni
nocf a<3n

0ono*j5'in
01O0fS10
oin^es:0

OOOOfS^
oroPFSüo
100C65^n

000^65*1
OlOOr.sio

01?06S^n
00006^30
01006K11
010^F^?n
000^66^1
010C66U1
0OOC66S1

0O0066-»0
000Cf68l
0rt0r>6«oi
01C167C1
00OC*7K
01016720
0000^73^
COO^^U?
010067^1
0001*7*0
01CC*770
0nc^fi7PO

; C"»C?«;7nci
'OOOOSPC^
OlOCfiRIO
01016^2^
c*>cif;P30
OlOCfiPa-»

■w.w»1-"1 »"■' -■W-JII-»
i m i ...IM .mi.- i Juil - i

-111-

O.H20225.1HftO.«1UFCAP.PLI

X*OLO*ANS* (OHI-niO) ; PUT SKIP EDTT(«CE POP LOTTERT* • ,1)
(COL(2).A,P(10,1)) : PHD;

BL£»> I? W0PD(3)*«P« TR»N PO;
XIB(3)»(XTN(3)-ULO)/{UHI-UIO) ; CALL UNICAL (XIN (3) ,ANS) ;
I*(AMS-XIM (1))/(XIN (2)-XIN (1)) ; PUT SKIP »DIT
(•P PCR LOTTFPY* «,X) (COL (2),A, F(R,3)) ; END;
GO TO GETCCH;

•*OC(21) : /• IRAP */
CALL G*rT2; "UFP*0lTST (I) ; PUT SKTP LIST
(•INPUT TNDIF FT. THFCUGH WHTCR CORY! WTTL PASS:«):
GIT LIST {(XIN(.l) DO J*1 TO ?)):
IP -«UP TH»N GC *0 PPCC21P; DO J=1 TO 2;
OMIFP-SnBA* (NSUR (JART (J))) . ONIPTR ;
ilir(j)»(xiN(j)-nLO)/(nnr-uLO); CALL UNICAL (XIN (J),ANS) ;
XTN(J)*»,NS; »HT>:

PR0C21B: X=SR*ILK (K1)*XIN (1) »S^ALLK(K2)»TTN(2)♦
CAPK-SNALLK (K1) •Sfli.LLK (K2) *XP1 (1)»XTN (?) :
PUT SKIP LIST («INPUT NU-HFR OP PTS. »OP HAP: •) ;
G~T LIST(N) ; FUT SKI» »01* (• IMP».? • #n»A1* (K 1) f

• fALOBS PCP HAP«) (C0L(2) ,A,A,A) ;
GFT LIST ((YIN(J) 00 J= 1 TO H)) ;
IF OF TH»N CC; nviPF-nNIPT'fXI); 00 J«1 TO N;
XIN(J)*(YIN(,T)-W^)/(UHI-ULO);
CALL ONICAL (XIN (J) ,AN5) : XIN(J)*ANS; END; END;
fLSE 00 J*1 TO N; XIN (J) = YiN (J) ; ENF;
CC -7*1 TO N;
XIU(J) = (X-SP!UIF (KI)MIN (J)) /(CAPK*SNAT.LK(K1)*SflALLK (K2)
■X\N(J) *Sf1ALlK(K2))? IF UF THZN 00;
0KIFP*0NIP?F(K2) ; CALL ONTMV (XIN f J) , ANS) ;
XIN(J)*ULO*ANS* (HHT-riTO) ; ENr; »NO;
VOT SKIP LIST («IRDIP»E°FNC». PTS«):
POT SKIP FOIT ((• (• ,YIN(J) ,« ,« ,XI l(J)#M' 00 ,7 = 1 TO N))
(COL(2),A,?(1C,3),A,P(10,3),A);
POT SKIP FDIT(»UTIL FOR CORVF NITH CTHER ATTR. AT 0»,
I) (COL(2),A,XP),»<R,3)) ;
GO TO GETCOH;

P*OC(22) : /* STOP */
POT SKIP LIST («THANKS FOR USING HUFCAP«): STOP;

PFOC(23): /• OFT.n • /
CAll D2LUT(V0BD(2)) J
POT SKIP LIST(«K««S
GO TO GETCR;

CALL SETOFF;
NEED NOPNALIZING AND RIGK NEEDS SETTING»)

OtLOT: PROC(TNA«F) ;
OCL TNARF CHAF(12),I FIXED, TS FTXFt;
00 1*1 TO NIPN; IS*MSUB(I); IF UTNAP»(T)*TNA«3 THEN DO;
BUFP*OLIST(I) ; GO TC »OHMO; END; FNE; POT SKIP EDIT
(TNAHP,' NOT IN <W) (COL (2) , A ,A) ; GO TO GETCC«;

FOOND: IF (NtJ-AT-1)=0 THEN DO; PUT SKIP LIST
(•PLEASE P»L»T» TR». NU» T* WHICH THIS A*TR. BELONGS«);
BBTUR'.; »ND;
POBAT*NnHAT-l; T>0 1*1 TO NU"AT; IF(I>*IS) THEN SHBAT(I)«
SOBAT(IM); ERD; PETOFN;

«?«D DBLOT;

030CS850
000QSR60
0^06877
0O0C68RO
070C6R90
OOC06900
00C06Q10
00006920
ooco6<no
000C6QU"»
01006«^
0000696C
00C06970
0*00*990
00CC699C
0OC0700O
00007010

0"»3C703°
0'>0070U'-
00C070S0
0000*»060
010T7070
0^C070RC
00007000
G0QC1V>0
00007110
03CC7120
0?CC-»130
00O071Ü0
00007150
00007160
07007170
00^0718*
000^7190
00007200
000C7210
00007220
07007230
00CC72U0
000072SO
00007260
oooo*»?-»o
07007280
03007293
01007300
00007310
0DCO7320
0O007330
000073UO
CO 70735 0
0-»007360
O000'»170
0300738^
07007390
00PO7U0O
OOC07«10

r
-112-

0. «20225.119Ut.l1 UPC AP. PLI

PROC(2U): /• ADTM! •/
CALL ADDUT(WO?D(?) ,mF!)(3)) ; CALL SITOPP;
POT SKI» LIST ALTERN. CO"?. -ÄY N*ED S'TTIMr^);
PUT SKIP LIST|U«'s svvfx NORMALIZING AND BTGK NEFDS SETTING»)
GO TO G*TCCN;

ADDOT: PP0C(TN1.?12);
D:T. (TMI,TN?) CHAS(12)
TF TR2-PNAHE TH*-N DC;
DO T=1 TO NUTN; IP UTR
HUIL TH»N DC; PMFP=CLI
FND;
POT SKIP FOIT (TN?,« NO

FCOHD: NÜMT*K0«1AT*1; Is^Nn
S«AMK(f»anAT) =1. O/NU«
•TMPnT PANGE *0? ATT'.
(CCL(2),A,P(2j,A,A) ; G
IP R1 = ?2 THEN DO;PnT S
GET IIS? (MAT); T*NP=*
WnBAT=MAT; TENP->CWAIN
CAPK»C; CALL OFT-TLT;
RISE DO; CHAIN* (NUKAT)
ORTPTR (NU1AT) =nvTFP; I]

3BT0RN; END ADD"T;

,1 «"IT-^.rS ?1T?D.«"**P P*P;
iapP=PIPST; GC TO FOHND; PND:
Af*p (T)=^v2r,CITST(H ->CHAI K» (N3HB (I)) -»=
ST(I)->CHAINP (VCUB(I)) ; GO TO POOND; END

m A 111»«) fC0L(2) ,A,A) ; GO TO GETC0J1;
*AI • nvAflF |«mMT) «TNI;
AT; 3'IT Sfri© iniT(

•»N'J-A"1,« OP "TIL FUNCTION •fT»»2)
ET LIST(F1#»2);
Kir LIST (»HOW PANY ATTP. TV THIS HTTP?:1)
"?F; ALLOCATE 1rJ» IN (BODY);
F fIS) =*0*P; NNA1F=TENO->0NA1E(IS) ;
1'JFF=TFir; ?if;
sVrjT.T,; ALLOCATE HNIP TN (PODY) ;
?YPE=:; ULO-91; UHI=P2; 7NO;

PPOCC25): /* SWITCH V
CALL SWITCR0(SCRD(2) , WCpO (3)) ; ..'ALL S'TOPP;
POT SKIP LIST(»K»»S IN B^TH NU7S NFfC NORMALIZING»)
GO TO GETCON;

SWITCHO: PF0C(TNl,T*2) ;
DCL (TN1,TN2) CHA«»(12)
.1ARY(1) f.TAPY(2) =0; DO
IF «ORnp^n^-rNA''* (I)
GO TC S»B; FNP; END;
IF (JARY(1)>0f,JAPY(2)>
IF (JARY(1) >0 CTN2=FNA
POT SKIP LISTf» 1TTP. N
Jl=JAPY(1) ;J2=JA5Y(2) ;
IF CHAINP(N^OB (J2))=NM
POT SKIP EDIT(TN2,• IS
GO TO GF.TCCH; END; HOP
TFflpsCLIST (.11) ; GC TC
J1*JARY (1) ; KUHSfJS (J1
NURAT=NT»AT*1 ; UNAHF (N
1.E0/N0MAT;
TF TE*P->CHAINP (K1)=NO
OMIPTP(NOMAT)=TF-?->TM
FLSE CHAINF(NüMAT) =TE"
RETURN; END SHI^CPI?;

SVB:

SVC:

SVD:
SIE:

,1 PIT'O, TE"P PTP;
1=1 TO NUTN; 10 .1=1 TO 2;

THEN 00; JA3Y (J) »I;

r) THEN GO TO SBC; END;
MR) THEN GO TO SVC;
OT BOTH POUND1): GO TC G'TCOM;;
K1 = NSMB(J1); MUPF=0LIS/(J2) ;
LL T«€N DO;

NOT A M'JP») (COL (2) ,A,A) ;
P=CHAIN» (NSfTB (J2)) ;
5*WF;
); TnPP = PI°ST; TEMP*CLTST(.T1) ;
rjflAT)=TN1: SNALLK(NOMAT)=

LL THEN no;
TPTP(KI); CHATNP (NÖ1AT) =N'TLL; EN»"';
P->CHAINF(K1) ; CALL D-iLUTfTNl);

PRCC(26): /• INTfPPK •/
IF »0RD(2) =PNA«r THPN DO; »roFP«FIRST: GO TO PR0C26D; PND;
00 I«1 TO NUTN; I» HOPD (2) =UTNAM f (I) THEN DO;
B0FP*OLIST(I); GO TO PP0C26P; END;FNO;

00C07U2"

00007UU*
0*)007üS0
0*0C"7ü6*
O*)C:7ü7O

0J0C7U30
ooco7uoo
070C7*0*
0?03751-7
oooo7s?*

;0")CC7*ttfl
0^075S0
0-»C07S6D
01C07570
000^7^80
0">C 07SQ.1
OOC07f00

; ITC^^flo
0">00762O
010C763C
000^7^ U")
T>OC7650
0)CO"F6^0
0100767*
03007680
OOCOT690
0O0C77n
0"»0n77in
00007720
000C730
000077UO
ft)0077SO
0*)CO77An
01007773
00007790
0000779*
00007800

0OC*7810
00007820
00C0783O
0000"»RüC
00OC7830
0^078*0
00007P70
O00078BD
C00078O0
03007000
OOC.07P1"»
0)0C7920
0D007Q30
00007QU')
OC0079SO
OCCOfiO
0')00"'970
007779PO

L i. —

wmmmmmm

-113-

O.H20225.11940,1rJFCAP.PtT

PB0C26C: POT SKIP LISTf»mP NOT PCUND»): GO TO G»TCCH;
PP0C26B; IF CHAIN?(NS13(I))=NUIL THEM GO TO PPOC2*C;

BnPP»CHÄT»IF(N<?üP(T)) :
PP0C26D: DO 1=1 TO NU1AT; I? CHAIN»(I)-»NOLL THFN

PÜI SKIP »DIT(rj»UPF (I) »• 3TGK* • ,CHAI*P (I) ->CA PK,
•IMTE9BK« •,CAPK*SHALLMI))
(COt(2)#A.A#»(«,l) ,X(2),A,P(8,3)): FND; GO TO G'TCOH;

BUT) XUFCAP; /• V

O900799?
0000PCC0
O0OC«C10
0O00*C2">

oooooruo
oiooiosi
ooooncßo
0*90*070

F— iMRF- ... 1 I '■(** I

-114-

O.B20225.119H0.3TGK.PIT

/* CAtCOtATB W IK HOL*. »CPU */
BIGK: PFOC (?K,Nn'.AT) RPT0?V5 (PLOhT):

DCL RK(*),IT*PATE LABFLl

/• CALCULATE SOU OP P*«S •/
S0HR*O; PO 1*1 TO NUIAT; SH?1fC=P «f (I) ♦SHIR; END;
IP ^RS(S0!1!C-1)<1.E-5 THPN PFTriFMf). FO) ;
IP SOPK<1. THEN GO TC POSK;

/• -1 < K < 0. TRT BKs-.S */
MRGK: BK=-.5; A0J--.S; ITS? ATE=HOf!EIN; GO TO TEST;

/♦ 0<K . *»T R'sl. */
POSK: BK*1.; ITFPÄTp = POSK1; GO TO T*ST;
POSK1: I' SP>Sl THEN SO TO "0SK2;

BP«PK*Br; GO TC TEST;
POSK2: ATPPATE=HC1S1N; ADJ«.25*BK; IP BK*1. THEM AD.T'.S;

BK«EK-ADJ; GO -Q TEST;

RCBPIII: ADJ«.S*ADJ; I» SP < ST. THEN BK*BK*ADJ; EtSP BK=BK-ADJ;

/* EfALOAT» STOES OF 1** = ?POD (1*KK(T>) */
TfST: SL*1. ♦ n»r; SP»1.j DC 1 = 1 TC WfV':T;

SP*S»*(1.*RK*PV(I)) ; *VO:
IP ABS(SR-SL) <1.E-} THE 4 R'Tfp» (9K) ;
GO TC ITFPATE;

END BIGK;

03000010
00CC002O
00000C 1"
ojccrcuo
000C0C**
ooooor^o
0000007^
oooo w>
P000?G90
O:OOOIüC
0?C03110
00000120
03000110

000O*)1Si
OOOC^.ißO
0W«17*
OOCOSIB"»
00000190
0700*)2™
000CO210
0DOC022O
COOOW
ooco*i2<r
000O25*
OOOC026"»
0300727*

-115-

U.H?0225.;19U1.UKI.PLI

/• FITS THE F0»»< U(X)=»»|1-pXP(-C)()) .
POHCTION IS ?10NOTCMIC TNC??ASING ON THE T*TPPVAL
0,1. C IS THE *TSK AVE3STCW CONSTANT •/

OHIFIP: PROC (xniD#xu,*Hi,B,c) :
OCl ITEPAT LABFL;
Sl«XHin;

/• CHEC* ON RANG» TO SEARCH FOR C •/
IP (XHID-Xtn)/(XHI-XlC) >.5 TH*N C5IGW«-1.; ELSF CSIG*«1.;

/• TPY |C| *1 V
C«1.«CSIGN; IT£RAT*=P*NG2EIK0; GO TO TEST;

RAHGEFINT): IF (SR-SL) *CSIGN<0 . THEN GO TC »ANGS»CHND;
C«C*C; GO TC TEST;

RlWGFFOnifE: IT»PATE*H01*IN;
IF »BS(C)*1 THFW AD.1*. «>«<*: »TSE AnJ*.2S*C?
C-C-AOJ; ADJ*AT)J*CSIGN; GO To TEST;

HCHEIH: ADJ«.5*A!>J; I? 5R<SL THEM C=C-Anj; ELS' C*>AD.T;

/* EFALOATF T*ST FOP C •/

TEST: SP»-LOG(.5* (FX? (-C«XT,0) ♦ «'XP (-C»XHI))) /C;
IF ABS (SR-Sl)<1.E-3 TflEN GO To CUT; GC TO IT2RAT*;

OUT: B«1/(1-EXP(-C)) ; PFTUFN;
IHD ONIFXP;

'MCCTCI*
oo*cor?o
0)00)030
C5CC0OUO
«30C005C
cocoor*"»*
DO0C007T
0)G?0f>a*
CC00009C
0)P0i1(n
OICOOH^
0900120
onccoi-n
ODooomn
0000015^

00CO0170
OOCCOIR"
oofl^omc
0*00020^
0000021-1
0!)CP922a

0000^23°
(POC^tt*
OOOCO?^
0">0' .-2r*
OIOCO??-)

■ ■■ ■-in li miinill

__ „ _... ^y^,., .,„»..,. — , ii. ■ sy^w^^pawm —■*»!',■« ---—■■»- ■< www i w i -■ -"<u '"«»J

-116-

APPENDIX C

SOME ALGORITHMS USED IN K-JFCAP

Apart from implementing the formula definitions

necessary to calculate particular quantities, certain MUFCA?

routines make use of some numerical analysis techniques or

algorithms. These are discussed in the appendix.

C^l Calculation of the Parameter k in the Multiplicative
Utility Function

A subroutine called BIGK calculates the k in the mul-

tiplicative utility function using (3) described in Section

2.1. The algorithm employed is an iterative one suggested in
n

Keeriey [9). Essentially, depending on the value of E k. ,
i-1 1

an interval is isolated where the value of k must lie. Once

a finite interval has been found where k lies, the bisection

method for finding a real root as described in Hamming [5] is

used to calculate k to the desired accuracy,
n

When Z k. > 0 , we know -1 < k < 0 and we have our
i=l x n

interval immediately. When I k. < 0 , BIGK tries succes-
i=l x

sive powers of 2 until a comparison of the two sides of (3)

indicates that a real root lies in the interval (2 , 2)

where n is as large as necessary for the particular case. The

bisection method is then used on this interval to calculate k

to the desired accuracy.

mmwm "Bpsk

-117-

Hamming f 5] explains why the bisection method is a

good one to use as opposed to other methods. Aside from being

easy to implement, it is less vulnerable to ill-behavior and

round-off error than other algorithms.

C.2 Calculation of the Constant Risk Scalar Utility
Function

A subroutine called UNIEXP calculates the parameter c

in the constant risk form u(x)=a+b(l~e) where the

conditions that u(0) =0 and u(l) = 1 impose the values a = 0

and b = 1/(1 - e~*C). Internally, MUFCAP "normalizes" all

scalar attributes to run between 0 and 1. For constant risk

attributes, MUFCAP internally has the attribute increasing on

the interval [0, 1]. On input and output, the appropriate

scale conversions are always made so the internal normaliza-

tion is transparent to the user except in displaying the para-

meters b and c.

One reason for normalization is that calculating

utility values using the computer's exponential algorithm is

made more accurate when the argument for the exporential func-

tion is not excessively large. This consideration is dis-

cussed in Schlaifer [16].

UNIEXP is very similar to BIGK in its algorithmic

method. The equation used is similar to that in Schlaifer [16]

where he discusses fitting constant risk forms. Again, the

-^ —_—_~ - - ..„„.WH.,—p..L i i nip*.^) P? ■■■!'-■*■■ '■" i "■ ' wmmmmmmmmmmm i!"'-»m w Iü i -«—- ^^»-li",»t

-118-

bisection method is used because of its nice "idiot-proof"

properties.

C.3 Calculation of Gradient ComDonents

The formula fcr the quantity ^u is derived in a

straightforward manner from either (1) or (2) in Section 2.1.

The quantity ^u 3x. , where x. designates a scalar attribute

amount and x is a "certainty" alternative, is calculated via
3u 3u du^

the chain rule 9x = g- A "dx~ * Because of the various
i i i dui

forms possible for u., the quantity —— is calculated by
dui i

using the approximation - = [u.(x. + .01) - u.(x.)]/
QX. 11 11

[(x. + .01) - (x.)]. Remember (as explained in C.2) that inter-

nally, MUFCAP scales all variables to run between 0 and 1.

This approximation was felt to be adequate for the purpose of

the program. When u. is a piecewiss linear form, the expres-

sion for the derivative when x. is a breakpoint represents

the change in the function when moving in the dJ rection from

the first range value to the second range value.

- HB .-..,... n ii . — iimi^i nil»! i i^w, ,...,„. n, . i.. i ■■;...,il ,1.11, JIJ^pil

-119-

APPENDIX D

MUFCAP*S OVERALL PROGRAM DESIGN

Tnis appendix gives an overview of the of crating

characteristics and programming design of MUFCAP.

D.l Language and Operating System Considerations

The package is composed of three procedures which are

compiled separately and then linked together. The main proce-

dures is called MUFCAP and contains the bulk of the package

making use of internal procedures sharing common data bases.

The two external subroutines are BIGK and UNIEXP which are

described in Appendix C.

The entire dckage is written in PL/1 using IBM's PL/1

optimizer compiler. Features of PL/1 which are used heavily

are its based storage capabilities for managing linked lists

and its recursive function capabilities for dealing with

nested multiattribute utility functions. It is conceivable

that a MUFCAP without nesting or a single level of nesting

could be written in a language like FORTRAN, but a more power-

ful language such as PL/1 seems ruuch more suitable for the

general nature of this programming task. A helpful reference

for PL/1 is Tike (2].

MUFCAP currently runs on an IBM 370/165 using IBM's

Timesharing Option, TSO. It runs in a partition of 300K when

using files for input and output although I believe it could

___._....... - ^.^„.IN „IM!,., Ml Wim imW'""^L.I" " .1) wnnj

-120-

get by with less memory. MUFCAP stores information on files

with a fixed record format of blocksize 13000 bytes using IBM

3330 disk drives. These file characteristics correspond to a

structure in the program designed to have room for roughly

twenty scalar attributes. These can be adjusted if certain

data structures in the program are made larger or smaller and

if a track overflow option is used on the IBM system for

blocksizes larger than. 13000 bytes. To create a dataset for

MUFCAP use, the following TSO commands work for the current

version:

attrib trib recfm(f) blksize (13000) lrecl(13000)

allocate file(namel) dataset(name2) using(trib)

space(5 2) block(13000)

The parameter 'namel* is the name MUFCAP uses in the

READ and SAVE commands. After a dataset has been created, new

datasets may be more easily created by copying an old one into

a new one using the TSO COPY command. Before using MUFCAP,

all datasets which are to be read or saved should be allocated

using the TSO ALLOCATE command. This is illustrated in Sec-

tion 5.1.4.

MUFCAP is 861 cards long. Some estimates of relevant

costs are:

compilation of program package $12 - $15

linking the programs into a load module $2 - $3

a one-hour assessment and use session $5

- .-J3J-•■■ *■,.«•"'■ <r
ii,,jui^w»|ij»ii^wii,iiimH-Ji'»iiiiipu *-- ipn.i» .11 uii ■..,n..uji..impniiiiiiLiii.jiapt.ipi ■. WiJ'

.„..„ ,..,.,» „ ...mm,m

-121-

P. 2 Data Structures in MUFCAP

There are two central data structures in MUFCAP; one is

for MUF's and the other for UNIF's. For any MUF required

during the program, a data structure is allocated with provi-

sion for the following information: the parameter k for the

function, an associated function name and the number of attri-

bute arguments of the function. Each MUF has room for 12

attribute arguments. For each of these arguments, the MUF

structure contains the following information: a pointer to

another MUF structure if an attribute argument is a vector, a

pointer to a UNIF structure if the attribute arguments is a

scalar, the k. for that attribute and the name of that attri-

bute.

When a scalar utility function or UNIF is required

during the program, a data structure is allocated with provi-

sion for the following information: two range boundary values

for the scalar attribute, the utility function type, room for

10 attribute amounts and the utilities of those amounts for

"certain" alternatives, location for up to 30 parameters to

specify the utility function (e.g., 15 abscissa and ordinate

values) and room for 5 probabilistic alternatives each denoted

by a cumulative p?.ecewise-linear distribution which may be

specified by as many as 9 points.

Along with these data structures are three arrays

wMch contain the names of ail the attributes, a pointer to

».«... !»■ i mm—m

-122-

the MUF where the attribute is "located" and the argument

number of the attribute in that MUF. By scanning these

arrays, the program finds the desired attribute name and then

has pointers to all the information necessary to perform cal-

culations involving that attribute name.

Data structures are allocated when needed in a desig-

nated area which can be written out on a file using the SAVE

command. The relevant pointers are expressed as offsets to

the beginning of this area.

D.3 Recursive Functions and Nesting

The data structures and PL/l's recursive procedure

capability enable the same algorithms to handle any level of

nesting. An example will illustrate the point. Suppose the

program needs to evaluate a MUF. A routine is called for this

purpose using (1) or (2) of Section 2.1 after a pointer has

been set pointing to the appropriate MUF. Now, suppose during

the course of evaluating (1) or (2), a vector attribute is

encountered having an associated MUF of its own. At this

point, the routine merely saves the pointer to the current

MUF, sets up a pointer to the nested MUF, calls itself to eval-

uate the nested MUF and takes that value and uses it as it

resumes its previous calculation. PL/l's recursive procedure

capability handles all the appropriate bookkeeping. MUFCAP

uses recursive routines to perform MUr evaluations, to

C-UIU'-.«-■<* !-"■'**' BP

 WWPWPIPPP H ilj PW ■'» Mi'l'UH,l ■ Uli II ™* - ■ .- ^H^W .,.."

-123-

calculate gradients, to chain through the multiattribute

utility function structure in setting ap the three arrays men-

tioned in Section D,2 and in setting up a nested MUF.

D.4 Evaluating Alternatives

As explained in Section D.2, each UNIF structure con-

tains room for specifying the scalar component for each of the

various alternatives. Whenever an alternative is specified or

a scalar utility function is set or change^, MUFCAP automati-

cally calculates the expected utility of that scalar attribute

for the alternative affected. By saving the value of

E[u.(x.)] as well as x., MUFCAP saves a lot of redundant cal-

culations when sensitivity analysis is performed involving

only changes in the k.fs. There are separate routines for

calculating expected utilities for scalar utility functions

depending on the scalar utility function type.

Various flags in the program enable MUFCAP to keep

track of when it is dealing with a certain alternative or a

probabilistic alternative. The names for alternatives are

contained in appropriate arrays and are saved when the SAVE

command is used.

D.5 Program Flow

Program flow in MUFCAP revolves around the command

processor section. This section determines what kind of

..ujllMMMi -IH»' HU I"1" ■ ■■'

-124-

command is requested and then transfers to the appropriate

command execution section. Aftt_ it is finished executing the

command, the execution section transfers back to the command

processor section for another command.

The execution sections are not internal procedures but

invoke procedures as is necessary. Operations which are

invoked by more than one execution section or are repeated

fairly often are incorporated into internal procedures.

-125-

APPENDIX E

TRADEOFF PROPERTIES OF THE ADDITIVE AND MULTIPLICATIVE FORMS

Tradeoffs between attributes X1 and X2 with the other

attributes (X3,...,Xn) held fixed can be represented by an

indifference map. An indifference map is a set of indiffer-

ence curves each having the property that no point on a par-

ticular curve is preferred to any other point on that same

curve. That is to say, all the points on a particular curve

are indifferent to each other. The "points" here are conse-

quences x with (x3,...,xn) held fixed but x± and x2 allowed to

vary. An indifference curve is generated when we choose a

pair (x^ x2) and display all the allowable (x,, xj pairs

which are indifferent to it.

When the requisite assumptions to imply either (1) or

(2) are satisfied (Section 2.1), an indifference curve is

represented analytically by (x^t x2) pairs satisfying

k. «i. ix^) + k2u2(x2) + kk1k2u1(x1)u2(x2) = constant (E-l)

This equation results from the fact that when two consequences

x' and x" are indifferent, u(x') = u(x"). When k = 0 in (E-l),

this corresponds to the additive form. When k ^ 0, this cor-

responds to the multiplicative form.

From (E-l) we can see that (x,, x2) pairs which are

indifferent to each other remain indifferent regardless of

-126-

the level at which (x_,...,x) happen to be fixed. Suppose we

wished to generate an indifference curve using only tradeoff

information between X, and X2. Since k in general depends on

the other k. via (3) (Section 2.1), we can generate two inde-

pendent equations using two sets of indifference pairs varying

x^ and x~. Using these, we can express k and k2 in terms of

k,. Setting k, to an arbitrary number corresponds to setting

the constant on the right hand side of (E-l) to an arbitrary

constant. This does not affect which points are indifferent

to each other. Thus, two sets of indifference pairs which are

independent enables us to calculate the parameters of an equa-

tion for indifference curves. Then, if we are given any point

(x«> x2) , we can generate all the {x.., x2) pairs which are

indifferent to it. To summarize, indifference curves repre-

senting tradeoffs between X, and X2 can be generated using

only information concerning preferences over (x,, x«) pairs

and need not require any specific tradeoff information con-

cerning the other attributes.

If we let y, - u-(x,) and y2 = u2(x2), equation (E-l)

becomes

^1^1 + k2y2 + ,cklJc2yly2 = constant

An indifference curve in (y., y«) space as opposed to

(x,, x«) space is always a hyperbola.

-127-

■ i■■!>■'-' ■«■;■' mvmrw

k > 0 k = 0

Figure E-l

k < 0

Indifference Curves in Utility Space

 .»,-— — ...^i . mmmmm i ""■"""l"' ■-■ - ■ "JIJ""L""- ' " ' "

-128-

Now let us examine the effect of nesting on indiffer-

ence curves. We will examine a three-attribute case of the

form u ■ u(ua, ufa) where ua = ua(a) and ub = (ug, ufc) . Thus,

the three single attributes involved are A, S and T.

In the multiplicative form, we have, symbolically

(where the arguments of the utility functions have been left

out for more concise notation),

1 + ku = (1 + kkaua)(1 + kkbub) (E-2)

] + k'u. = (1 + k'k u Ml + k'k.u.) (E-3)
O S S tu

Substituting (E-3) into (E-2) yields

1 + ku

= (1 + kk u) (1 + kk./k'Ml + k'k u) (1 + k'k.u.)-!}) (E-4)
a a D s s t t

Now, note what happens if k1 = kk.

We then obtain

1 + ku

= (1 + kk u J (; + [(1 + kk.k u)(1 + kk.k.u.)-*]) aa DSS Dtt

= (1 + kk u Ml + kk'u)(1 + kk» uj (E-5) a a s s t t

where k' = k.k s b s
k' ■ k k * t *b*t

Equation (E-5) is nothing but the multiplicative form

for three attributes. Thus, if k' - kk., any pair of

»-r-r4lyll.|iilip».T.-T.>Triji-Wiw'.n ■■■'*, 'i ■»■u.yi^--^— wrw»-—>•'■ PLijp..w.j^»iiiiiwuiiiM-i-A>wiP»*^i>|iwWm»;i.B»yw».|j»,»y,ii'»»'.'i ' WiWWWW ■ W PWH— I ■ ■-"" ■ J- un. J.IMI. HIHIHI 1.1 i»> M i » 1. ■--—- - L. » . i WIUM

-129-

attributes has the preferential independence property and the

indifferent cur*-, properties of (E-l) apply. However, if

k* ■* kk. , this is no longer true. We can no longer factor

the expression for 1 ■*■ ku into three factors each dealing with

a single attribute. Because of this, if u(a',s',t) =

u t*in ,s", t) , it is net necessarily the case that u(a',sf,t') -

u(aH,s",t') where t' ^ t. That is to say, indifference curvor:

J-.rtwccn a and s depend on t when there is nesting and

• * kkb-

MUFCAP has a command IX7ERBK which calculates the

quantity kk. and compares it to k' where b is any vector

attribute in a particular MUF and k, , k and k' are the analo-

j'\:z parameters to those in our example. If kkb«V'; then

the nesting of attributes into their own internal MUF may be

unnecessary. Section 5.1.4 has an illustration of the use of

I:;TERBK.

